	Lecture 9
State Feedback and Observers Real-Time Systems, Lecture 9	[IFAC PB Chapter 8]
Karl-Erik Årzén February 2017 Lund University, Department of Automatic Control	 State feedback Observers Integral action and disturbance estimation
ntrol Design	Two Classes of Control Problems
Many factors to consider, including: • Attenuation of load disturbances • Reduction of the effect of measurement noise • Command signal following • Variations and uncertainties in process behavior	 Regulation problems: compromise between rejection of load disturbances and injection of measurement noise Feedback Lecture 9 Servo problems: make the output respond to command signals in the desired way Feedforward Lecture 10
te Feedback: Problem Formulation	2 Closed-Loop System
x $-L$ u Process y	The state equation $x(k+1) = \Phi x(k) + \Gamma u(k)$ with the control law $u(k) = -L x(k)$
Discrete-time process model	gives the closed-loop system
$x(k+1) = \Phi x(k) + \Gamma u(k)$	$x(k+1) = (\Phi - \Gamma L) x(k)$ Pole placement design: Choose L to obtain the desired characteristic
Linear feedback from all state variables	equation
u(k) = -Lx(k)	$\det(zI - \Phi + \Gamma L) = 0$
 Disturbances modelled by nonzero initial state x(0) = x₀ Goal: Control the state to the origin, using a reasonable control 	(Matlab: place or acker)
signal	State feedback only modifies the poles, not the zeros

State feedback only modifies the poles, not the zeros

Example – Double Integrator

$$x(k+1) = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} x(k) + \begin{pmatrix} h^2/2 \\ h \end{pmatrix} u(k)$$

Linear state-feedback controller

$$u(k) = -Lx(k) = -l_1x_1(k) - l_2x_2(k)$$

The closed-loop system becomes

1

$$\begin{aligned} t(k+1) &= (\Phi - \Gamma L)x(k) \\ &= \begin{pmatrix} 1 - l_1 h^2/2 & h - l_2 h^2/2 \\ -l_1 h & 1 - l_2 h \end{pmatrix} x(k) \end{aligned}$$

Characteristic equation

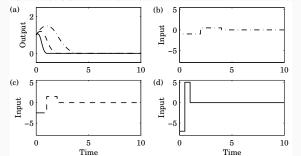
$$z^{2} + \left(\frac{l_{1}h^{2}}{2} + l_{2}h - 2\right)z + \left(\frac{l_{1}h^{2}}{2} - l_{2}h + 1\right) = 0$$

Deadbeat Control — Only in Discrete Time

Choose $P(z) = z^n \Rightarrow h$ only remaining design parameter

Drives all states to zero in at most n steps after an impulse disturbance in the states (can be very aggressive for small h!)

Example: Double integrator, $x_0^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$, (b) h = 2 (dash-dotted), (c) h = 1 (dashed), (d) h = 0.5 (solid)



State Feedback in Reachable Form

Convert the system to reachable canonical form:

$$x(k+1) = \begin{bmatrix} -a_1 & -a_2 & \dots & -a_n \\ 1 & 0 & \dots & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$

In this case, application of the state feedback

$$u = -l_1 x_1 - \dots - l_n x_n$$

changes the coefficients a_1,\ldots,a_n to $a_1+l_1,\ldots,a_n+l_n,$ so the characteristic polynomial changes to

$$z^{n} + (a_{1} + l_{1})z^{n-1} + \dots + (a_{n-1} + l_{n-1})z + a_{n} + l_{n}$$

Design method: Transform to reachable canonical form, apply state feedback, transform the controller back again – Ackermann's formula (see IFAC PB)

Example Cont'd

Characteristic equation

$$z^{2} + \left(\frac{l_{1}h^{2}}{2} + l_{2}h - 2\right)z + \left(\frac{l_{1}h^{2}}{2} - l_{2}h + 1\right) = 0$$

Assume desired characteristic equation $z^2 + a_1 z + a_2 = 0$.

Linear equations for $l_1 \mbox{ and } l_2$

$$\frac{l_1h^2}{2} + l_2h - 2 = a_1 \qquad \qquad \frac{l_1h^2}{2} - l_2h + 1 = a_2$$

Solution:

$$l_1 = \frac{1}{h^2} \left(1 + a_1 + a_2 \right)$$
$$l_2 = \frac{1}{2h} \left(3 + a_1 - a_2 \right)$$

• L depends on h

Reachability

6

8

The eigenvalues of $\Phi-\Gamma L$ can be placed arbitrarily if and only if the system is reachable, i.e. if the reachability matrix

$$W_c = \left(\Gamma \quad \Phi \Gamma \quad \dots \quad \Phi^{n-1} \Gamma \right)$$

has full rank.

If rank($W_C)=n_c< n$ then the system has an unreachable subsystem and its $n-n_c$ eigenvalues cannot be changed by state feedback. However, if the system is stabilizable the closed loop system will still be stable

In practice, also when the system is reachable, moving some eigenvalues could require high gain and lead to bad controllers.

State Feedback with Integral Action

Integral action can be introduced by augmenting the plant model with an extra state variable, x_i , that integrates the plant output:

$$x_i(k+1) = x_i(k) + y(k) = x_i(k) + Cx(k)$$

The augmented open-loop system becomes

$$\begin{pmatrix} x(k+1) \\ x_i(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & 0 \\ C & I \end{pmatrix} \begin{pmatrix} x(k) \\ x_i(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k)$$

We can then design a state feedback controller

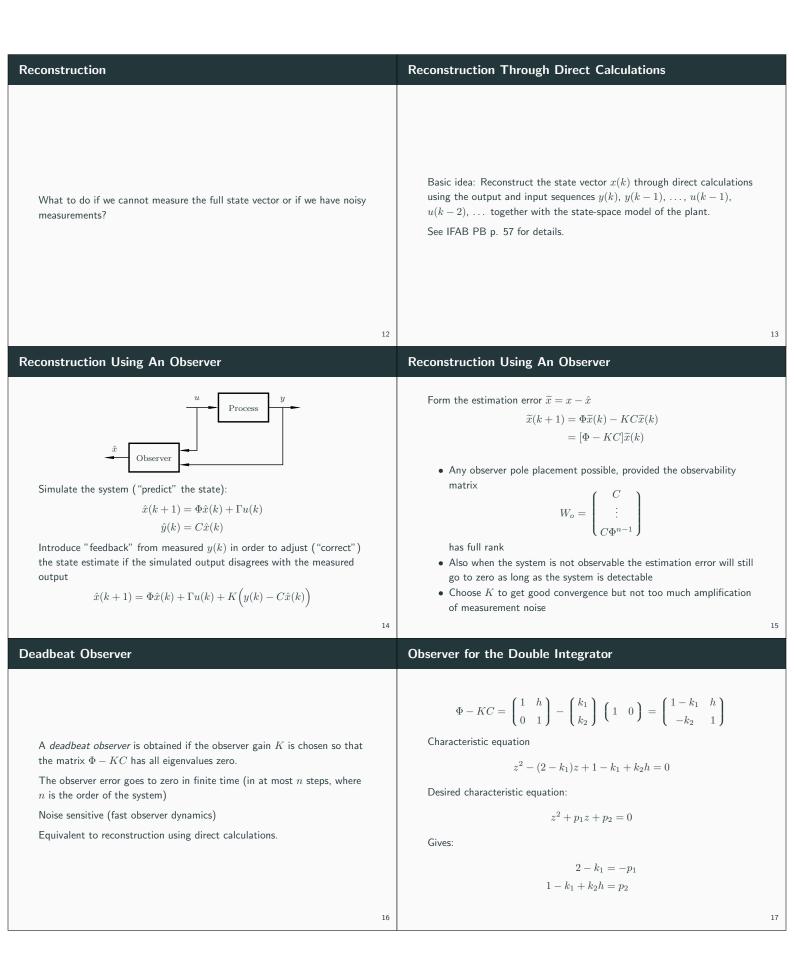
$$u(k) = - \begin{pmatrix} L & L_i \end{pmatrix} \begin{pmatrix} x(k) \\ x_i(k) \end{pmatrix}$$

using the same techniques as before

(Integral action can also be introduced using a disturbance observer, as we will see later)

9

10



Observer for the Double Integrator cont'd

Solution:

$$k_1 = 2 + p_1$$

 $k_2 = (1 + p_1 + p_2)/h$

Assume deadbeat observer $(p_1 = p_2 = 0)$

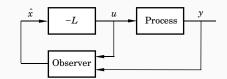
 $k_1 = 2$ $k_2 = 1/h$

Resulting observer

$$\hat{x}_1(k+1) = \hat{x}_1(k) + h\hat{x}_2(k) + \frac{h^2}{2}u(k) + 2\Big(y(k) - \hat{x}_1(k)\Big)$$
$$\hat{x}_2(k+1) = \hat{x}_2(k) + hu(k) + \frac{1}{h}\Big(y(k) - \hat{x}_1(k)\Big)$$

Output Feedback

State feedback from observed state:



Controller:

Disturbance Estimation

disturbances in the process state? Assume that the process is described by

where \boldsymbol{v} is a disturbance modeled as

imaginary axis (sinusoidal disturbance)

$$\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma u(k) + K(y(k) - C \hat{x}(k))$$
$$u(k) = -L \hat{x}(k)$$

Controller transfer function (from y to u):

$$H_c(z) = -L(zI - \Phi + \Gamma L + KC)^{-1}K$$

 $\frac{dx}{dt} = Ax + Bu + v$

 $\frac{dw}{dt} = A_w w$ $v = C_w w$

Since disturbances typically have most of their energy at low frequencies, A_w often has eigenvalues in the origin (constant disturbance) or on the

How to handle disturbances that can not be modeled as impulse

y = Cx

An Alternative Observer

The observer presented so far has a one sample delay: $\hat{x}(k \mid k-1)$ depends only on measurements up to time k-1.

Alternative observer with direct term:

$$\begin{split} \hat{x}(k \mid k) &= \Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \\ &+ K \Big[y(k) - C \Big(\Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \Big) \Big] \\ &= (I - KC) \left(\Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \right) + K y(k) \end{split}$$

Reconstruction error:

$$\widetilde{x}(k \mid k) = x(k) - \hat{x}(k \mid k) = (\Phi - KC\Phi) \,\widetilde{x}(k-1 \mid k-1)$$

• $\Phi-KC\Phi$ can be given arbitrary eigenvalues if $\Phi-KC$ can

• K may be chosen so that some of the states will be observed directly through $y \Rightarrow$ the order of the observer can be reduced • Reduced order observer or *Luenberger observer*

Analysis of the Closed-Loop System

$$\begin{aligned} x(k+1) &= \Phi x(k) + \Gamma u(k) \\ \widetilde{x}(k+1) &= (\Phi - KC)\widetilde{x}(k) \\ u(k) &= -L\widehat{x}(k) = -L(x(k) - \widetilde{x}(k)) \end{aligned}$$

minate $u(k)$
$$\begin{pmatrix} x(k+1) \\ \widetilde{x}(k+1) \end{pmatrix} = \begin{pmatrix} \Phi - \Gamma L & \Gamma L \\ 0 & \Phi - KC \end{pmatrix} \begin{pmatrix} x(k) \\ \widetilde{x}(k) \end{pmatrix}$$

Separation

Eli

18

20

22

Control poles:
$$A_c(z) = \det(zI - \Phi + \Gamma L)$$

Observer poles: $A_o(z) = \det(zI - \Phi + KC)$

The observer poles should normally be considerably faster than the controller poles

Disturbance Estimation

Augment the state vector: $\begin{pmatrix} x \\ w \end{pmatrix}$ Gives the augmented system

$$\frac{d}{dt} \begin{pmatrix} x \\ w \end{pmatrix} = \begin{pmatrix} A & C_w \\ 0 & A_w \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix} + \begin{pmatrix} B \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix}$$

Sample this using ZOH:

$$\begin{pmatrix} x(k+1) \\ w(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & \Phi_{xw} \\ 0 & \Phi_{w} \end{pmatrix} \begin{pmatrix} x(k) \\ w(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k)$$
$$y = \begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} x(k) \\ w(k) \end{pmatrix}$$

21

19

23

Augmented Observer and State Feedback

Augmented observer:

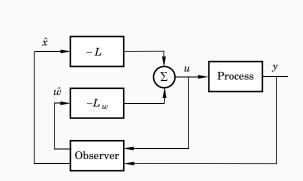
$$\begin{pmatrix} \hat{x}(k+1)\\ \hat{w}(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & \Phi_{xw}\\ 0 & \Phi_{w} \end{pmatrix} \begin{pmatrix} \hat{x}(k)\\ \hat{w}(k) \end{pmatrix} + \begin{pmatrix} \Gamma\\ 0 \end{pmatrix} u(k) + \begin{pmatrix} K\\ K_{w} \end{pmatrix} \epsilon(k)$$
with $\epsilon(k) = u(k) - C\hat{x}(k)$

Augmented state feedback control law:

$$u(k) = -L\hat{x}(k) - L_w\hat{w}(k)$$

If possible, select L_w such that $\Phi_{xw} - \Gamma L_w = 0$

Disturbance Estimation: Block Diagram



27

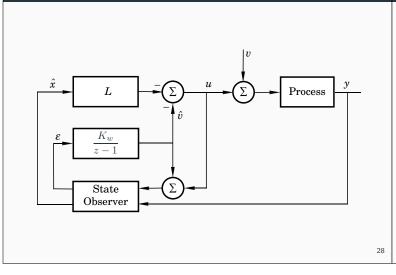
29

Disturbance Estimation: Closed-Loop System	Special Case: Constant Input Disturbance
The closed-loop system can be written $\begin{aligned} x(k+1) &= (\Phi - \Gamma L)x(k) + (\Phi_{xw} - \Gamma L_w)w + \Gamma L\widetilde{x}(k) + \Gamma L_w\widetilde{w} \\ w(k+1) &= \Phi_w w(k) \\ \widetilde{x}(k+1) &= (\Phi - KC)\widetilde{x}(k) + \Phi_{xw}\widetilde{w}(k) \\ \widetilde{w}(k+1) &= \Phi_w\widetilde{w}(k) - K_wC\widetilde{x}(k) \end{aligned}$	Assume constant disturbance acting on the plant input: • $v = w$ • $\Phi_w = 1$ • $\Phi_{xw} = \Gamma$ If we choose $L_w = 1$ we will have perfect cancellation of the load disturbance New controller + estimator
 L ensures that x goes to zero at the desired rate after a disturbance. The gain L_w reduces the effect of the disturbance v on the system by feedforward from the estimated disturbance ŵ. K and K_w influence the rate at which the estimation errors go to zero. 	$u(k) = -L\hat{x}(k) - \hat{v}(k)$ $\hat{x}(k+1) = \Phi\hat{x}(k) + \Gamma\left(\hat{v}(k) + u(k)\right) + K\epsilon(k)$ $\hat{v}(k+1) = \hat{v}(k) + K_w\epsilon(k) \qquad \text{(integrator)}$ $\epsilon(k) = y(k) - C\hat{x}(k)$

26

24

Special Case: Block Diagram



Example – Design

• Control of double integrator

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0\\ 1 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

- Sample with $h=0.44\,$
- Discrete state feedback designed based on continuous-time specification $\omega=1,~\zeta=0.7$

• Gives $L = [0.73 \ 1.21]$

• Extended observer assuming constant input disturbance to obtain integral action; all three poles placed in z=0.75.

• Gives $K^T = [0.75 \ 0.41], \ K_w = 0.08$

Example – Design	Example – Simulation
<section-header><section-header><section-header><section-header><figure><page-footer></page-footer></figure></section-header></section-header></section-header></section-header>	(a) 10 10 10 10 10 10 10 10 10 10 10 10 10
<pre>State feedback using observer with one sample delay 1 y = ReadInput(); 2 u = -L*x_hat; 3 WriteOutput(u); 4 x_hat = Phi*x_hat + Gamma*u + K*(y - C*x_hat);</pre>	<pre>State feedback using observer with direct term 1 y = ReadInput(); 2 x_hat = Phi*x_hat + Gamma*u + K*(y - C(Phi*x_hat + Gamma*u)): 3 u = -L*x_hat; 4 WriteOutput(u); Can be simplified further in order to minimize the computation time 1 y = ReadInput(); 2 x_hat = x_temp + K*y; 3 u = -L*x_hat; 4 WriteOutput(u); 5 x_temp = (I-K*C)*(Phi*x_hat + Gamma*u);</pre>
32 Optimization-Based Design	33 Example in Matlab
 Pole placement used to calculate L and K in this course In the course Multivariable Control (Flervariabel Reglering), L and K are instead derived through optimization LQ (Linear Quadratic) and LQG (Linear Quadratic Gaussian) control Short overview in Chapter 11 of IFAC PB Not part of this course 	<pre>% Define continuous-time process % = [0 : 1 0]; B = [0 : 1]; C = [1 0]; % Sample the process using ZOH h = 0.44; [Phi,Gamma] = c24(A,B,h) Hp = ss(Phi,Gamma,C,0,h) % Specify desired poles in continuous time omega = 1; zeta = 0.7; pc = roots([1 2*zeta*omega omega 2]) % Calculate corresponding desired discrete-time poles pd = exp(cr+h) % Design state feedback L = place(Phi,Gamma,pd) % Define augmented system and design observer Gamma = [Gamma; 0] Phis = [Phi Gamma; coros(1,2) 1]; C = [C 0]; K = acker(Phi*, Ce*, [0.75 0.75 0.75])' L = [L 1] % Form complete controller Hc = as(Phi=Gamma*L=-Ke*Ce,Ke,Le,O,h) bode(Hc)</pre>
34	3