State Feedback and Observers

Real-Time Systems, Lecture 9

Anton Cervin
11 February 2016

Lund University, Department of Automatic Control

[IFAC PB Chapter 8]

e State feedback
e Observers

o Integral action and disturbance estimation

Control Design Two Classes of Control Problems

Many factors to consider, including:

e Attenuation of load disturbances
e Reduction of the effect of measurement noise
¢ Command signal following

e Variations and uncertainties in process behavior

Regulation problems: compromise between rejection of load
disturbances and injection of measurement noise

o Feedback
e Lecture 9

Servo problems: make the output respond to command signals in
the desired way

e Feedforward
e Lecture 10

State Feedback: Problem Formulation Closed-Loop System

—L Process |—

o Discrete-time process model
x(k +1) = &x(k) + Tu(k)
o Linear feedback from all state variables
u(k) = —Lx(k)

e Disturbances modelled by nonzero initial state x(0) = xo

e Goal: Control the state to the origin, using a reasonable control
signal

The state equation

x(k +1) = &x(k) + Tu(k)
with the control law

u(k) = —Lx(k)

gives the closed-loop system

X(k+1) = (®—TL)x(k)
Pole placement design: Choose L to obtain the desired characteristic
equation

det(zl — & +TL) =0

(Matlab: place or acker)



Example — Double Integrator Example Cont’d
Characteristic equation
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x(k+1)= x(k) + u(k 2+ 1—+Ih—2)z+<1——lh 1):0
(= (g 3] w0 (7] (" +e b+
Linear state-feedback controller Assume desired characteristic equation z% + a;z + a, = 0.

u(k) = —Lx(k) = —hx1 (k) — bxa(k) Linear equations for /; and kb
2
The closed-loop system becomes % +hh—2=a; % —bh+1=a,
x(k+1)=(®—-TL)x(k) Solution:
1—hh?j2 h—Lh?/2 " 1

—Lh 1—bh b=tz (1+ar+a)

Characteristic equation = 217’ B+ a1 —a)
2
22+ <¥+/2h—2>z+ <%—/2h+1> =0

e [ dependson h

Where to Place the Poles? Example — Choice of Design Parameters

Recall from Lecture 7:
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Deadbeat Control — Only in Discrete Time Controllability

Choose P(z) = z" = honly remaining design parameter

Drives all states to zero in at most n steps after an impulse
disturbance in the states (can be very aggressive for small h!)

The eigenvalues of ® — I'L can be placed arbitrarily if and only if the
Example: Double integrator, xJ = [1 1] system is controllable, i.e. if the controllability matrix
(a) b) 5
L2 Wc:[r or ... 4>"-1r]
é /‘\' 20‘_.1‘_‘-‘ _________ -
3 \\\ \ ] has full rank.
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State Feedback in Controllable Form State Feedback with Integral Action

Convert the system to controllable canonical form:

—a; —a ... —ap
x(k+1) = o0 x(k) + ° u(k)
1 0 0
In this case, application of the state feedback
u=—hxy —-—lIXp
changes the coefficients a1,...,a,to ay + h,...,an + Ir, so the

characteristic polynomial changes to
2"+ (a1 + h)Z2" N+ (@nt )z an+

Design method: Transform to controllable canonical form, apply state
feedback, transform the controller back again — Ackermann’s formula
(see IFAC PB)

Integral action can be introduced by augmenting the plant model with
an extra state variable, x;, that integrates the plant output:

Xi(k + 1) = xi(k) + y(k) = xi(k) + Cx(k)

The augmented open-loop system becomes
x(k+1) o 0 x(k) r
= + u(k)
Xi(k +1) c | Xi(k) 0

We can then design a state feedback controller
x(k)
u(k):—[L L,-][ ]
xi(k)
using the same techniques as before

(Integral action can also be introduced using a disturbance observer,
as we will see later)

What to do if we cannot measure the full state vector or if we have
noisy measurements?

Basic idea: Reconstruct the state vector x(k) through direct
calculations using the output and input sequences y(k), y(k—1), ...,
u(k—1), u(k —2), ... together with the state-space model of the
plant.

See IFAB PB p. 57 for details.

Reconstruction Using An Observer Reconstruction Using An Observer

Process

X
—=— Observer

Simulated process model:

X(k+1) = dx(k) + Tu(k)
y(k) = Cx(k)

Introduce "feedback" from measured y(k)

Kk +1) = O%(k) + Tu(k) + K(y(k) - C)?(k))

Form the estimation error x = x — X
X(k +1) = ®x(k) — KCx(K)
= [® — KC]x(k)

e Any observer pole placement possible, provided the observability

matrix
(o]

Wo = E
C¢n—1
has full rank

e Choose K to get good convergence but not too much
amplification of measurement noise



Deadbeat Observer Observer for the Double Integrator

1 h ki 11—k h
®—KC= - [ 10 ] =
0 1 ks —k 1
A deadbeat observer is obtained if the observer gain K is chosen so Characteristic equation

that the matrix ® — KC has all eigenvalues zero.

22—(2—k1)z+1 —k1 +k2h:0
The observer error goes to zero in finite time (in at most n steps,

where n is the order of the system) Desired characteristic equation:
Noise sensitive (fast observer dynamics) 22+ p1z+p2=0

Equivalent to reconstruction using direct calculations. Gives:

2— ki =—py
1— ki + keh=po
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Observer for the Double Integrator cont’d An Alternative Observer

Solution: The observer presented so far has a one sample delay:
ki =2+ py X(k | k — 1) depends only on measurements up to time k — 1
ko =(1+p:i+p2)/h Alternative observer with direct term:

X(k | k)= Ox(k—1| k—1)+Tu(k —1)
+K[y(k)—c(¢$((k—1 |k—1)+ru(k—1))]

Assume deadbeat observer (py = p. = 0)
= (I- KC) (d>)?(k—1 | k—1)+ru(k—1)) + Ky(k)

ki =2
ko = 1/h Reconstruction error:
X(k | k) = x(k) — X(k | k) = (¢ — KC®) x(k —1 | k-1

Resulting observer (assuming u = 0) (kk) (k) (k) = IX( | )

. A A & & — KC® can be given arbitrary eigenvalues if ® — KC can

%1 (k +1) = %1 (k) + h¥a(k) + 2(y(Kk) — % (k °

1(k+1) 1(k) + hie(k) + (y( )= %( )) e K may be chosen so that some of the states will be observed
. . 1 N i
So(k +1) = %o(K) + ; (y(k) _ x1(k)) directly through y = the order of the observer can be reduced

o Reduced order observer or Luenberger observer
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Output Feedback Analysis of the Closed-Loop System

State feedback from observed state:

& u y x(k +1) = dx(k) + Tu(k)
- Process X(k+1) = (& — KO)X(k)
u(k) = —L&(K) = —L(x(k) — X(K))

Observer Eliminate u(k)
Controller: [f“‘*”] _ [4’—”— re ] [X(k)]
X(k+1) 0o o-«kc) |xk

X(k +1) = &x(k) + Tu(k) + K(y(k) — Cx(k))
u(k) = —Li(k) .
Separation

Controller transfer function (from y to u): Control poles:  Aq(z) = det(zl — & +T'L)

He(z) = —L(zI — & + TL+ KC)'K Observer poles:  A,(z) = det(z/ — ¢ + KC)

23 24



Disturbance Estimation Disturbance Estimation

How to handle disturbances that can not be modeled as impulse
disturbances in the process state?

Assume that the process is described by

%:AX+BU+V

y=0Cx

where v is a disturbance modeled as

aw
o = Ayw

v=_Cyw

Since disturbances typically have most of their energy at low
frequencies, Ay, often has eigenvalues in the origin (constant
disturbance) or on the imaginary axis (sinusoidal disturbance)

X
Augment the state vector: [ ]
w

Gives the augmented system
d (x A Cy X B
— = + u
dat | w 0 A, w 0
X
=|C O
r=(e0) (1)
Sample this using ZOH:

x(k+1) O by x(k) r
[rocen) = (e &) o) o) 0
w(k+1) 0 o w(k) 0
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Augmented Observer and State Feedback Disturbance Estimation: Block Diagram

Augmented observer:
X(k+1) (P P X(k) r i K ”
[W(k+1)] - [o ¢w] [W(k)]+[0]”( ”[Kw](”

with ¢(k) = y(k) — CX(k)

Augmented state feedback control law:
u(k) = —LX(k) — L, W(k)

If possible, select L, such that &, — 'L, =0

K>

> Process

IS

-L

Observer
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Disturbance Estimation: Closed-Loop System Special Case: Constant Input Disturbance

The closed-loop system can be written

X(k+1) = (® —TL)x(K) + (Pxw — TLw)W + TLx(k) + T Ly W
w(k+1) = dw(k)

X(k+1) = (¢ — KC)x(k) + Oy W(k)

w(k +1) = o, w(k) — Ky CX(k)

L ensures that x goes to zero at the desired rate after a disturbance.

The gain L, reduces the effect of the disturbance v on the system by
feedforward from the estimated disturbance w.

e K and K, influence the rate at which the estimation errors go to zero.

Assume constant disturbance acting on the plant input:

o V=Ww

e b, =1

o by =T
If we choose L, = 1 we will have perfect cancellation of the load
disturbance

New controller + estimator

u(k) = —L&(k) — V(k)
K(k +1) = OK(K) + F(O(k) & u(k)) + Ke(k)
V(k+1) = V(k) + Kuwe(k) (integrator)

e(k) = y(k) — Cx(k)
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Special Case: Block Diag Example — Design

e Control of double integrator

Process

State
Observer

3

ax 0 1 N 0
— = X u
at 00 1

y=[1 O]x

e Sample with h = 0.44
o Discrete state feedback designed based on continuous-time

specification w =1, { = 0.7
o Gives L =[0.73 1.21]

e Extended observer assuming constant input disturbance to

obtain integral action; all three poles placed in z = 0.75.
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Example — Design Example — Simulation

Bode diagram of resulting controller:

Bode Diagram
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Optimization-Based Design Example in Matlab

Pole placement design used in this course:
e [ and K derived through pole placement

In the course Multivariable Control (Flervariabel Reglering),
L and K are instead derived through optimization

e LQ (Linear Quadratic) and LQG (Linear Quadratic Gaussian)
control

e Short overview in Chapter 11 of IFAC PB

e Not part of this course

35

v
v

A =1[01; 0 0];

B = [0; 1];

h = 0.44;

[Phi,Gamma] = c2d(A,B,h)

Hp = ss(Phi,Gamma,C,0,h);

% Desired poles in continuous time
omega = 1; zeta = 0.7;

pc = roots([1 2*zeta*omega omega”2])

% Corresponding desired discrete-time poles
pd = exp(pc*h)

% Design state feedback

L = place(Phi,Gamma,pd)

Le = [L 1];

% Design augmented observer

Phie = [Phi Gamma; zeros(1,2) 11;

Ce = [C 0];

Ke = acker(Phie’,Ce’,[0.75 0.75 0.75])’
% Form controller

Hc = ss(Phie-Gammae*Le-Ke*Ce,Ke,Le,0,h);

bode (He) e



