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Lecture 9

[IFAC PB Chapter 8]

• State feedback

• Observers

• Integral action and disturbance estimation
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Control Design

Many factors to consider, including:

• Attenuation of load disturbances

• Reduction of the effect of measurement noise

• Command signal following

• Variations and uncertainties in process behavior
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Two Classes of Control Problems

Regulation problems: compromise between rejection of load
disturbances and injection of measurement noise

• Feedback

• Lecture 9

Servo problems: make the output respond to command signals in
the desired way

• Feedforward

• Lecture 10

4



State Feedback: Problem Formulation

x u y
−L Process

• Discrete-time process model

x(k + 1) = Φx(k) + Γu(k)

• Linear feedback from all state variables

u(k) = −Lx(k)

• Disturbances modelled by nonzero initial state x(0) = x0

• Goal: Control the state to the origin, using a reasonable control
signal
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Closed-Loop System

The state equation

x(k + 1) = Φx(k) + Γu(k)

with the control law

u(k) = −Lx(k)

gives the closed-loop system

x(k + 1) = (Φ− ΓL) x(k)

Pole placement design: Choose L to obtain the desired characteristic
equation

det(zI − Φ+ ΓL) = 0

(Matlab: place or acker)

6



Example – Double Integrator

x(k + 1) =




1 h

0 1


 x(k) +




h2/2

h


 u(k)

Linear state-feedback controller

u(k) = −Lx(k) = −l1x1(k)− l2x2(k)

The closed-loop system becomes

x(k + 1) = (Φ− ΓL)x(k)

=




1− l1h2/2 h − l2h2/2

−l1h 1− l2h


 x(k)

Characteristic equation

z2 +

(
l1h2

2
+ l2h − 2

)
z +

(
l1h2

2
− l2h + 1

)
= 0
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Example Cont’d

Characteristic equation

z2 +

(
l1h2

2
+ l2h − 2

)
z +

(
l1h2

2
− l2h + 1

)
= 0

Assume desired characteristic equation z2 + a1z + a2 = 0.

Linear equations for l1 and l2

l1h2

2
+ l2h − 2 = a1

l1h2

2
− l2h + 1 = a2

Solution:

l1 =
1
h2 (1 + a1 + a2)

l2 =
1

2h
(3 + a1 − a2)

• L depends on h
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Where to Place the Poles?

Recall from Lecture 7:

Loci of constant ζ (solid) and ωh (dashed) when
ω 2

s2 + 2ζ ωs +ω 2

is sampled using ZOH (zi = esi h)
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Example – Choice of Design Parameters

Double integrator, xT
0 = [ 1 1 ], ωh = 0.44, ζ = 0.707

(b) ω = 0.5 (dash-dotted), (c) ω = 1 (dashed), (d) ω = 2 (solid)
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Deadbeat Control — Only in Discrete Time

Choose P(z) = zn [ h only remaining design parameter

Drives all states to zero in at most n steps after an impulse
disturbance in the states (can be very aggressive for small h!)

Example: Double integrator, xT
0 = [ 1 1 ]
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Controllability

The eigenvalues of Φ− ΓL can be placed arbitrarily if and only if the
system is controllable, i.e. if the controllability matrix

Wc =

 Γ ΦΓ . . . Φn−1Γ




has full rank.

In practice, moving some eigenvalues could require high gain and
lead to bad controllers.
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State Feedback in Controllable Form

Convert the system to controllable canonical form:

x(k + 1) =




−a1 −a2 . . . −an

1 0 . . . 0
. . .

...

1 0




x(k) +




1

0
...

0




u(k)

In this case, application of the state feedback

u = −l1x1 − ⋅ ⋅ ⋅− lnxn

changes the coefficients a1, . . . ,an to a1 + l1, . . . ,an + ln, so the
characteristic polynomial changes to

zn + (a1 + l1)zn−1 + ⋅ ⋅ ⋅ + (an−1 + ln−1)z + an + ln

Design method: Transform to controllable canonical form, apply state
feedback, transform the controller back again – Ackermann’s formula
(see IFAC PB)
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State Feedback with Integral Action

Integral action can be introduced by augmenting the plant model with
an extra state variable, xi , that integrates the plant output:

xi(k + 1) = xi(k) + y(k) = xi(k) + Cx(k)

The augmented open-loop system becomes



x(k + 1)

xi(k + 1)


 =




Φ 0

C I







x(k)

xi(k)


+




Γ

0


 u(k)

We can then design a state feedback controller

u(k) = −

 L Li







x(k)

xi(k)




using the same techniques as before

(Integral action can also be introduced using a disturbance observer,
as we will see later)
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Reconstruction

What to do if we cannot measure the full state vector or if we have
noisy measurements?
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Reconstruction Through Direct Calculations

Basic idea: Reconstruct the state vector x(k) through direct
calculations using the output and input sequences y(k), y(k − 1), . . . ,
u(k − 1), u(k − 2), . . . together with the state-space model of the
plant.

See IFAB PB p. 57 for details.
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Reconstruction Using An Observer

x̂

u y

Observer

Process

Simulated process model:

x̂(k + 1) = Φx̂(k) + Γu(k)

ŷ(k) = Cx̂(k)

Introduce "feedback" from measured y(k)

x̂(k + 1) = Φx̂(k) + Γu(k) + K
(

y(k)− Cx̂(k)
)
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Reconstruction Using An Observer

Form the estimation error x̃ = x − x̂

x̃(k + 1) = Φx̃(k)− KCx̃(k)

= [Φ− KC]x̃(k)

• Any observer pole placement possible, provided the observability
matrix

Wo =




C
...

CΦn−1




has full rank

• Choose K to get good convergence but not too much
amplification of measurement noise
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Deadbeat Observer

A deadbeat observer is obtained if the observer gain K is chosen so
that the matrix Φ− KC has all eigenvalues zero.

The observer error goes to zero in finite time (in at most n steps,
where n is the order of the system)

Noise sensitive (fast observer dynamics)

Equivalent to reconstruction using direct calculations.
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Observer for the Double Integrator

Φ− KC =




1 h

0 1


−




k1

k2





 1 0


 =




1− k1 h

−k2 1




Characteristic equation

z2 − (2− k1)z + 1− k1 + k2h = 0

Desired characteristic equation:

z2 + p1z + p2 = 0

Gives:

2− k1 = −p1

1− k1 + k2h = p2
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Observer for the Double Integrator cont’d

Solution:

k1 = 2 + p1

k2 = (1 + p1 + p2)/h

Assume deadbeat observer (p1 = p2 = 0)

k1 = 2

k2 = 1/h

Resulting observer (assuming u = 0)

x̂1(k + 1) = x̂1(k) + hx̂2(k) + 2
(

y(k)− x̂1(k)
)

x̂2(k + 1) = x̂2(k) +
1
h

(
y(k)− x̂1(k)

)
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An Alternative Observer

The observer presented so far has a one sample delay:
x̂(k p k − 1) depends only on measurements up to time k − 1

Alternative observer with direct term:

x̂(k p k) = Φx̂(k − 1 p k − 1) + Γu(k − 1)

+ K
[
y(k)− C

(
Φx̂(k − 1 p k − 1) + Γu(k − 1)

)]

= (I − KC)
(
Φx̂(k − 1 p k − 1) + Γu(k − 1)

)
+ Ky(k)

Reconstruction error:

x̃(k p k) = x(k)− x̂(k p k) = (Φ− KCΦ) x̃(k − 1 p k − 1)

• Φ− KCΦ can be given arbitrary eigenvalues if Φ− KC can
• K may be chosen so that some of the states will be observed

directly through y [ the order of the observer can be reduced
• Reduced order observer or Luenberger observer
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Output Feedback

State feedback from observed state:

Controller:

x̂(k + 1) = Φx̂(k) + Γu(k) + K (y(k)− Cx̂(k))

u(k) = −Lx̂(k)

Controller transfer function (from y to u):

Hc(z) = −L(zI − Φ+ ΓL + KC)−1K
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Analysis of the Closed-Loop System

x(k + 1) = Φx(k) + Γu(k)

x̃(k + 1) = (Φ− KC)x̃(k)

u(k) = −Lx̂(k) = −L(x(k)− x̃(k))

Eliminate u(k)



x(k + 1)

x̃(k + 1)


 =




Φ− ΓL ΓL

0 Φ− KC







x(k)

x̃(k)




Separation

Control poles: Ac(z) = det(zI − Φ+ ΓL)

Observer poles: Ao(z) = det(zI − Φ+ KC)
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Disturbance Estimation

How to handle disturbances that can not be modeled as impulse
disturbances in the process state?

Assume that the process is described by

dx
dt

= Ax + Bu + v

y = Cx

where v is a disturbance modeled as

dw
dt

= Aw w

v = Cw w

Since disturbances typically have most of their energy at low
frequencies, Aw often has eigenvalues in the origin (constant
disturbance) or on the imaginary axis (sinusoidal disturbance)
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Disturbance Estimation

Augment the state vector:




x

w




Gives the augmented system

d
dt




x

w


 =




A Cw

0 Aw







x

w


+




B

0


 u

y =

C 0







x

w




Sample this using ZOH:



x(k + 1)

w(k + 1)


 =




Φ Φxw

0 Φw







x(k)

w(k)


+




Γ

0


 u(k)

y =

C 0







x(k)

w(k)



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Augmented Observer and State Feedback

Augmented observer:



x̂(k + 1)

ŵ(k + 1)


 =




Φ Φxw

0 Φw







x̂(k)

ŵ(k)


+




Γ

0


 u(k) +




K

Kw


 ǫ(k)

with ǫ(k) = y(k)− Cx̂(k)

Augmented state feedback control law:

u(k) = −Lx̂(k)− Lw ŵ(k)

If possible, select Lw such that Φxw − ΓLw = 0
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Disturbance Estimation: Block Diagram

∑

L

Process

−
u

Observer

ˆ x 

y

−L w

  ̂w
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Disturbance Estimation: Closed-Loop System

The closed-loop system can be written

x(k + 1) = (Φ− ΓL)x(k) + (Φxw − ΓLw )w + ΓLx̃(k) + ΓLw w̃

w(k + 1) = Φw w(k)

x̃(k + 1) = (Φ− KC)x̃(k) + Φxw w̃(k)

w̃(k + 1) = Φw w̃(k)− Kw Cx̃(k)

• L ensures that x goes to zero at the desired rate after a disturbance.

• The gain Lw reduces the effect of the disturbance v on the system by
feedforward from the estimated disturbance ŵ .

• K and Kw influence the rate at which the estimation errors go to zero.
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Special Case: Constant Input Disturbance

Assume constant disturbance acting on the plant input:

• v = w

• Φw = 1

• Φxw = Γ

If we choose Lw = 1 we will have perfect cancellation of the load
disturbance

New controller + estimator

u(k) = −Lx̂(k)− v̂(k)

x̂(k + 1) = Φx̂(k) + Γ
(

v̂(k) + u(k)
)
+ K ǫ(k)

v̂(k + 1) = v̂(k) + Kwǫ(k) (integrator)

ǫ(k) = y(k)− Cx̂(k)
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Special Case: Block Diagram

∑

Process
u

L
yˆ x 

State

Observer

∑ ∑

ε

−
ˆ v 

v

−

Kw

z − 1
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Example – Design

• Control of double integrator

dx
dt

=




0 1

0 0


 x +




0

1


 u

y =

 1 0


 x

• Sample with h = 0.44

• Discrete state feedback designed based on continuous-time
specification ω = 1, ζ = 0.7

• Gives L = [0.73 1.21]

• Extended observer assuming constant input disturbance to
obtain integral action; all three poles placed in z = 0.75.
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Example – Design

Bode diagram of resulting controller:
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Example – Simulation
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Optimization-Based Design

Pole placement design used in this course:

• L and K derived through pole placement

In the course Multivariable Control (Flervariabel Reglering),
L and K are instead derived through optimization

• LQ (Linear Quadratic) and LQG (Linear Quadratic Gaussian)
control

• Short overview in Chapter 11 of IFAC PB

• Not part of this course
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Example in Matlab

>> A = [0 1; 0 0];

>> B = [0; 1];

>> h = 0.44;

>> [Phi,Gamma] = c2d(A,B,h)

>> Hp = ss(Phi,Gamma,C,0,h);

>> % Desired poles in continuous time

>> omega = 1; zeta = 0.7;

>> pc = roots([1 2*zeta*omega omega^2])

>> % Corresponding desired discrete-time poles

>> pd = exp(pc*h)

>> % Design state feedback

>> L = place(Phi,Gamma,pd)

>> Le = [L 1];

>> % Design augmented observer

>> Phie = [Phi Gamma; zeros(1,2) 1];

>> Ce = [C 0];

>> Ke = acker(Phie’,Ce’,[0.75 0.75 0.75])’

>> % Form controller

>> Hc = ss(Phie-Gammae*Le-Ke*Ce,Ke,Le,0,h);

>> bode(Hc)
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