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Lecture 7: Input-Output Models
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e Shift operators; the pulse transfer operator

e Z-transform; the pulse transfer function

e Transformations between system representations
e System response, frequency response

e ZOH sampling of a transfer function

Linear System Models Shift Operators

State-space model Input-output models
X
u y u y
— System |—=— System
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oT | X(t) = Ax(t) + Bu(t) T T L any G(p) / G(s)
y(t) = Cx(t) =b &l 4 by
K)+ayk—1)+---+
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More |-O models: (im)pulse response, step response, frequency response

Operators on time series
The sampling period is chosen as the time unit (f(k) & f(kh))

Time series are doubly infinite sequences:

o f(k):k=...—1,0,1,...
Forward shift operator: Backward shift operator:
o denoted q o denoted g~
o gf(k)=f(k+1) o g 'f(k) =f(k—1)

o q"f(k) = f(k+n) o g "f(k) = f(k—n)

Pulse Transfer Operator Poles and Zeros (SISO case)

Rewrite the state-space model using the forward shift operator:
Xx(k +1) = gx(k) = dx(k) + Tu(k)
y(k) = Cx(k) + Du(k)
Eliminate x(k):

x(k) = (gl — &) "Tu(k)
y(k) = Cx(k) + Du(k) = C(ql — &)~ 'Tu(k) + Du(k)
= [C(ql — ®)7'T + D] u(k) = H(q)u(k)

H(q) is the pulse transfer operator of the system

Describes how the input and output are related.

The pulse transfer function is a rational function

_ B(9)
(@)= m

deg A = n = the number of states
degB=n,<n

A(q) is the characteristic polynomial of ¢, i.e.

A(q) = det(ql/ — @)

The poles of the system are given by A(g) = 0

The zeros of the system are given by B(q) = 0



Interpretation of Poles and Zeros Disk Drive Example

Ul Recall the double integrator from the previous lecture:
e Apole in ais associated with the time function f(k) = a*
dx 0 1 0
= u
a o o 1
Zeros:
y=[1 0]x

o A zero in aimplies that the transmission of the input u(k) = a* is
blocked by the system
e Related to how inputs and outputs are coupled to the states

1 o (D:eAh= T
o8 0 1

g

04 h s 0.5
E u y 02 F:/ e*Bds =

. 4.{ b_A of ooooocoooo 0 1
i 5 5 s

Sample with h = 1:

o
0
o,
o,
003
00°
o,
o,
00%
00°

&
&

Disk Drive Example From Pulse Transfer Operator to Difference Equation

Pulse transfer operator:
H(q) = C(ql—®)~'T+D

g-1 - r {0.5} _05(q+1)

= O]{ 0 q-1 1 (g—1)?

Two poles in 1, one zero in —1.
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y(k) = H(q)u(k)
A(q)y(k) = B(q)u(k)
(@ +a1q" "+ - +an)y(k) = (boq@™ + - + by, )u(k)
which means

y(k+n)+ay(k+n—1)+ - + apy(k)
= bou(k+nb)+ +bnbu(k)

Difference Equation with Backward Shift Difference Equation with Backward Shift

y(k+n +aytk+n—1)+ - +apy(k)
= bou(k + np) + -+ + bn,u(k)

can be written as

y(K) +ay(k—1)+ - +any(k—n)
=bou(k —d)+ -+ + bpu(k —d —np)

where d = n— ny is the pole excess of the system.

The reciprocal polynomial
Aq)=1+aig+ - +aq" = q"A(q")

is obtained from the polynomial A by reversing the order of the
coefficients.

Now the system can instead be written as

A'(q")y(k) = B'(q")u(k — d)



Using forward shift
y(k+2)+2y(k+1)+3y(k) = 2u(k + 1) + u(k)
can be written
(¢ +2q +3)y(k) = (2q + 1)u(k)
Hence,
A(Q) = ¢* +2q+3
B(q) =2q+1

Using backward shift, the same equation can be written (d = 1)
(1+297" +3g7%)y(k) = 2+ g "u(k—1)
Hence,
A(g")y=1+2q"+3g7?
B(q)=2+q"

The discrete-time counterpart to the Laplace transform

Defined on semi-infinite time series f(k) : k = 0,1,...

Z{f(k)} = F(2) = i f(k)z ™%
k=0

z is a complex variable

Example — Discrete-Time Step Signal Z-transform Table

Let y(k) =1 for k > 0. Then

Y@)=1+z"+z2+... =

s z| >1
z-1 Il

Application of the following result for power series

= 1

> oxk= for |x| < 1
1—x

k=0

Table 2 (p 26) in IFAC PB (ignore the middle column!)
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Some Properties of the Z-transform From State Space to Pulse Transfer Function

Z(af + Bg) = aF(z) + BG(2)
Z(q"f) = z7"F(2)

Z(qf) = z(F(2) — £(0))

k
Z(fxg)=2 {Z f()a(k —j)} = F(2)G(2)
j=0

Xx(k + 1) = ox(k) + Tu(k)
y(k) = Cx(k) + Du(k)

z(X(2) — x(0)) = ¢X(2) + TU(2)
Y(z) = CX(z) + DU(z)

Y(z) = C(zl — )7z x(0) + [C(zl — ¢)~'T + D]U(z)

The rational function H(z) = C(zI — ®)~'T + D is called the pulse
transfer function from u to y.

It is the Z-transform of the pulse response h(k)



H(q) vs H(z) Calculating System Response Using the Z-transform

1. Find th | fer f ion H(z) = | — &) 'T+D
The pulse transfer operator H(q) and the pulse transfer function H(z) ind the pulse transfer function H(z) = C(z oI

are the same rational functions 2. Compute the Z-transform of the input: U(z) = Z{u(k)}
They have the same poles and zeros 3. Compute the Z-transform of the output:
Y(z) = C(zl — )z x(0) + H(z)U(z)

H(q) is used in the time domain (q = shift operator)
H(2) is used in the Z-domain (z = complex variable) 4. Apply the inverse Z-transform (table) to find the output:
| | = | = |
. yik) = 27 Y(2)}

Frequency Response — Continuous Time Frequency Response — Discrete Time
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=i . . . Given a stable system H(z), the input u(k) = sin(wk) will, after a
0 g 10 L&) transient, give the output
Given a stable system G(s), the input u(t) = sin ot will, after a i . i
k) = |H(e™ k H(e™
transient, give the output y(k) = [H(E™)l sm(w +argH(e ))
y(t) = |G(iw)| sin (‘Ut +arg G(’“’)) o G(s) and the imaginary axis are replaced by H(z) and the unit
circle.

e The amplitude and phase shift for different frequencies are given
by the value of G(s) along the imaginary axes, i.e. G(iw)
e Plotted in Bode and Nyquist diagrams

e Only describes what happens at the sampling instants
e The inter-sample behavior is not studied in this course
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Bode Diagram Nyquist Diagram

Bode diagram for G(s) = 1/(s? + 1.4s + 1) (solid) and ZOH-sampled Nyquist diagram for G(s) = 1/(s? + 1.4s + 1) (solid) and
counterpart H(z) (dashed, plotted for wh € [0, x]) ZOH-sampled counterpart H(z) (dashed, plotted for wh € [0, x])
: Bode Diagram Nyquist Diagram
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The hold circuit can be approximated by a delay of h/2



ZOH Sampling of a Transfer Function Calculation of H(z) Given G(s)
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How to calculate H(z) given G(s)?

Calculation of H(z) Given G(s)

3. Use Table 3 (p 27) in IFAC PB

b1z" 1 4 bz - by

H(z) =
CC) ) Z"+az" N+t a
1 &
s z—1
1 H(z+1)
s? 2(z—1)2
e—sh 2—1
a 1 —exp(—ah)
s+a z —exp(—ah)
1 —f 1 —ah —ah
a b1:5(ah—1+e ) b2:5(1—e — ahe™@")
s(s+a) ah

ay=—(1+e3) ap;=e"

Calculation of H(z) Given G(s)

ZOH sampling is a linear operation, so a large transfer function G(s)
may be split into smaller parts Gi(s) + Gz(s) + ... that are sampled
separately

Three approaches:

1. Make a state-space realization of G(s). Sample using ZOH to
obtain ¢ and . Then H(z) = C(zI — ®)~'T + D.

o Works also for systems with time delays, G(s)e™*"
2. Use the formula

z-1 1
z 27ni,

ytico  gsh G(s)

y—ic Z—€" 8

1 e —1
=ZZ_765,,Res{ 5 G(s)}

s=5;

H(z) = ds

o s; are the poles of G(s) and Res denotes the residue.
o outside the scope of the course
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Calculation of H(z) Given G(s)

Example: For G(s) = e 7°/s?, the previous lecture gave

x(kh+ h) = dx(kh) + [1u(kh — h) + Tou(kh)

S LIS o)

With h =1 and r = 0.5, this gives

_ N 0.125(2% + 6z + 1
H(z) = C(zl — &) (To+ Tz ‘):72(22_2“1) )

Order: 3

Poles: 0, 1, and 1
Zeros: —3+ /8
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Transformation of Poles via ZOH Sampling: z; = e°"
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29 Note: The stability properties are preserved by ZOH sampling! 30



New Evidence of the Alias Problem Transformation of Zeros via Sampling

Several points in the s-plane are mapped into the same point in the
z-plane. The map is not bijective

3r/h
z/h
Pix pX
Sy pix
| _a/h X
-3n/h
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e More complicated than for poles
o Extra zeros may appear in the sampled system

e There can be zeros outside the unit circle (non-minimum phase)
even if the continuous system has all the zeros in the left half
plane

e For short sampling periods

zi ~ eh
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ZOH Sampling of a Second Order System Sampled Second Order System

The poles of the sampled system are given by

Second order continuous-time system with complex poles:
2

10}

G(s) :

= <1
52 4+ 20 wos + w3 ¢

Im

e Larger o = faster system response
e Smaller ¢ = larger damping. Relative damping { = cos ¢.
e Common control design choice: { = cos45° ~ 0.7

33

Zitaz+a=0

where

a; = —2e ¢ cos (Mwoh)

Imaginary axis

34

Real axis

Sampled Second Order System Examples in Matlab

Im(z)

Re(z)
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% From state space system to pulse transfer function
A =1[01; 0 0];

B = [0; 1];

Cc = [10];

D = 0;

contsys = ss(4,B,C,D);

h =1;

discsys = c2d(contsys,h);

tf (discsys) % pulse transfer function
zpk(discsys) % factored pulse transfer function

% Bode and Nyquist diagrams

s = t£(’s’); G = 1/(s72+1.4%s+1);
H = c2d(G,1);

bode (G,H)

nyquist (G,H)

% Sampling of a second-order transfer function
G = 1/(s"2+s+1);
h=0.1;

36
H = c2d(G,h)



