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Lecture 7: Input-Output Models

[IFAC PB Ch 3 p 22-34]

• Shift operators; the pulse transfer operator

• Z-transform; the pulse transfer function

• Transformations between system representations

• System response, frequency response

• ZOH sampling of a transfer function
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Linear System Models

State-space model Input-output models

System
u y

x

System
u y

Differential/difference Transfer
equation operator/fcn

CT ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

dny
dtn + a1

dn−1y
dtn−1 + ⋅ ⋅ ⋅ + any

= b1
dn−1u
dtn−1 + ⋅ ⋅ ⋅ + bnu

G(p) / G(s)

DT
x(k+1) = Φx(k) + Γu(k)

y(k) = Cx(k)

y(k) + a1y(k−1) + ⋅ ⋅ ⋅+

any(k−n) = b1u(k−1)

+ ⋅ ⋅ ⋅ + bnu(k−n)

H(q) / H(z)

More I-O models: (im)pulse response, step response, frequency response
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Shift Operators

Operators on time series

The sampling period is chosen as the time unit
(

f (k)\ f (kh)
)

Time series are doubly infinite sequences:

• f (k) : k = . . .− 1,0,1, . . .

Forward shift operator:

• denoted q

• qf (k) = f (k + 1)

• qnf (k) = f (k + n)

Backward shift operator:

• denoted q−1

• q−1f (k) = f (k − 1)

• q−nf (k) = f (k − n)
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Pulse Transfer Operator

Rewrite the state-space model using the forward shift operator:

x(k + 1) = qx(k) = Φx(k) + Γu(k)

y(k) = Cx(k) + Du(k)

Eliminate x(k):

x(k) = (qI − Φ)−1Γu(k)

y(k) = Cx(k) + Du(k) = C(qI − Φ)−1Γu(k) + Du(k)

=
[

C(qI − Φ)−1Γ + D
]

u(k) = H(q)u(k)

H(q) is the pulse transfer operator of the system

Describes how the input and output are related.
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Poles and Zeros (SISO case)

The pulse transfer function is a rational function

H(q) =
B(q)
A(q)

deg A = n = the number of states
deg B = nb ≤ n

A(q) is the characteristic polynomial of Φ, i.e.

A(q) = det(qI − Φ)

The poles of the system are given by A(q) = 0

The zeros of the system are given by B(q) = 0

6



Interpretation of Poles and Zeros

Poles:

• A pole in a is associated with the time function f (k) = ak

Zeros:

• A zero in a implies that the transmission of the input u(k) = ak is
blocked by the system

• Related to how inputs and outputs are coupled to the states
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Disk Drive Example

Recall the double integrator from the previous lecture:

dx
dt

=

[

0 1

0 0

]

x +

[

0

1

]

u

y = [ 1 0 ] x

Sample with h = 1:

Φ = eAh =

[

1 1

0 1

]

Γ =

∫ h

0
eAsB ds =

[

0.5

1

]
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Disk Drive Example

Pulse transfer operator:

H(q) = C(qI − Φ)−1Γ + D

= [ 1 0 ]

[

q − 1 −1

0 q − 1

]−1 [
0.5

1

]

=
0.5(q + 1)
(q − 1)2

Two poles in 1, one zero in −1.
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From Pulse Transfer Operator to Difference Equation

y(k) = H(q)u(k)

A(q)y(k) = B(q)u(k)

(qn + a1qn−1 + ⋅ ⋅ ⋅ + an)y(k) = (b0qnb + ⋅ ⋅ ⋅ + bnb)u(k)

which means

y(k + n) + a1y(k + n − 1) + ⋅ ⋅ ⋅ + any(k)

= b0u(k + nb) + ⋅ ⋅ ⋅ + bnb u(k)
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Difference Equation with Backward Shift

y(k + n) + a1y(k + n − 1) + ⋅ ⋅ ⋅ + any(k)

= b0u(k + nb) + ⋅ ⋅ ⋅ + bnb u(k)

can be written as

y(k) + a1y(k − 1) + ⋅ ⋅ ⋅ + any(k − n)

= b0u(k − d) + ⋅ ⋅ ⋅ + bnb u(k − d − nb)

where d = n − nb is the pole excess of the system.
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Difference Equation with Backward Shift

The reciprocal polynomial

A∗(q) = 1 + a1q + ⋅ ⋅ ⋅ + anqn = qnA(q−1)

is obtained from the polynomial A by reversing the order of the
coefficients.

Now the system can instead be written as

A∗(q−1)y(k) = B∗(q−1)u(k − d)
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Difference Equation Example

Using forward shift

y(k + 2) + 2y(k + 1) + 3y(k) = 2u(k + 1) + u(k)

can be written

(q2 + 2q + 3)y(k) = (2q + 1)u(k)

Hence,

A(q) = q2 + 2q + 3

B(q) = 2q + 1

Using backward shift, the same equation can be written (d = 1)

(1 + 2q−1 + 3q−2)y(k) = (2 + q−1)u(k − 1)

Hence,

A∗(q−1) = 1 + 2q−1 + 3q−2

B∗(q−1) = 2 + q−1
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Z-transform

The discrete-time counterpart to the Laplace transform

Defined on semi-infinite time series f (k) : k = 0,1, . . .

Z{f (k)} = F (z) =
∞
∑

k=0

f (k)z−k

z is a complex variable
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Example – Discrete-Time Step Signal

Let y(k) = 1 for k ≥ 0. Then

Y (z) = 1 + z−1 + z−2 + ⋅ ⋅ ⋅ =
z

z − 1
, pzp > 1

Application of the following result for power series

∞
∑

k=0

xk =
1

1− x
for px p < 1
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Z-transform Table

Table 2 (p 26) in IFAC PB (ignore the middle column!)

f Lf Z f

δ (k) (pulse) – 1

1 k ≥ 0 (step)
1
s

z
z − 1

kh
1
s2

hz
(z − 1)2

1
2
(kh)2 1

s3

h2z(z + 1)
2(z − 1)3

e−kh/T T
1 + sT

z
z − e−h/T

1− e−kh/T 1
s(1 + sT )

z(1− e−h/T )

(z − 1)(z − e−h/T )

sinω kh
ω

s2 +ω 2

z sinω h
z2 − 2z cosω h + 1 16



Some Properties of the Z-transform

Z(α f + βg) = α F (z) + βG(z)

Z(q−nf ) = z−nF (z)

Z(qf ) = z(F (z)− f (0))

Z(f ∗ g) =Z







k
∑

j=0

f (j)g(k − j)







= F (z)G(z)
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From State Space to Pulse Transfer Function







x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k) + Du(k)







z(X (z)− x(0)) = ΦX (z) + ΓU(z)

Y (z) = CX (z) + DU(z)

Y (z) = C(zI − Φ)−1z x(0) + [C(zI − Φ)−1Γ + D]U(z)

The rational function H(z) = C(zI − Φ)−1Γ + D is called the pulse
transfer function from u to y .

It is the Z-transform of the pulse response h(k)
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H(q) vs H(z)

The pulse transfer operator H(q) and the pulse transfer function H(z)
are the same rational functions

They have the same poles and zeros

H(q) is used in the time domain (q = shift operator)

H(z) is used in the Z-domain (z = complex variable)
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Calculating System Response Using the Z-transform

1. Find the pulse transfer function H(z) = C(zI − Φ)−1Γ + D

2. Compute the Z-transform of the input: U(z) =Z{u(k)}

3. Compute the Z-transform of the output:

Y (z) = C(zI − Φ)−1z x(0) + H(z)U(z)

4. Apply the inverse Z-transform (table) to find the output:
y(k) =Z−1{Y (z)}
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Frequency Response – Continuous Time
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Given a stable system G(s), the input u(t) = sinω t will, after a
transient, give the output

y(t) = pG(iω )p sin
(

ω t + arg G(iω )
)

• The amplitude and phase shift for different frequencies are given
by the value of G(s) along the imaginary axes, i.e. G(iω )

• Plotted in Bode and Nyquist diagrams
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Frequency Response – Discrete Time
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Given a stable system H(z), the input u(k) = sin(ωk) will, after a
transient, give the output

y(k) = pH(eiω )p sin
(

ωk + arg H(eiω )
)

• G(s) and the imaginary axis are replaced by H(z) and the unit
circle.

• Only describes what happens at the sampling instants

• The inter-sample behavior is not studied in this course
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Bode Diagram

Bode diagram for G(s) = 1/(s2 + 1.4s + 1) (solid) and ZOH-sampled
counterpart H(z) (dashed, plotted for ωh ∈ [0,π ])
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The hold circuit can be approximated by a delay of h/2 23



Nyquist Diagram

Nyquist diagram for G(s) = 1/(s2 + 1.4s + 1) (solid) and
ZOH-sampled counterpart H(z) (dashed, plotted for ωh ∈ [0,π ])
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ZOH Sampling of a Transfer Function

replacementsu(k)

u(k)

y(k)

y(k)

G(s)

\

H(z)

ZOH

How to calculate H(z) given G(s)?
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Calculation of H(z) Given G(s)

Three approaches:

1. Make a state-space realization of G(s). Sample using ZOH to
obtain Φ and Γ. Then H(z) = C(zI − Φ)−1Γ + D.

• Works also for systems with time delays, G(s)e−sτ

2. Use the formula

H(z) =
z − 1

z
1

2π i

∫ γ +i∞

γ −i∞

esh

z − esh

G(s)
s

ds

=
∑

s=si

1
z − esh Res

{

esh − 1
s

G(s)
}

• si are the poles of G(s) and Res denotes the residue.
• outside the scope of the course
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Calculation of H(z) Given G(s)

3. Use Table 3 (p 27) in IFAC PB

G(s) H(z) =
b1zn−1 + b2zn−2 + ⋅ ⋅ ⋅ + bn

zn + a1zn−1 + ⋅ ⋅ ⋅ + an

1
s

h
z − 1

1
s2

h2(z + 1)
2(z − 1)2

e−sh z−1

a
s + a

1− exp(−ah)
z − exp(−ah)

a
s(s + a)

b1 =
1
a
(ah − 1 + e−ah) b2 =

1
a
(1− e−ah − ahe−ah)

a1 = −(1 + e−ah) a2 = e−ah
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Calculation of H(z) Given G(s)

Example: For G(s) = e−τ s/s2, the previous lecture gave

x(kh + h) = Φx(kh) + Γ1u(kh − h) + Γ0u(kh)

Φ =











1 h

0 1











Γ1 =











τ
(

h − τ

2

)

τ











Γ0 =













(h − τ )2

2
h − τ













With h = 1 and τ = 0.5, this gives

H(z) = C(zI − Φ)−1(Γ0 + Γ1z−1) =
0.125(z2 + 6z + 1)

z(z2 − 2z + 1)

Order: 3
Poles: 0, 1, and 1
Zeros: −3±

√
8
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Calculation of H(z) Given G(s)

ZOH sampling is a linear operation, so a large transfer function G(s)
may be split into smaller parts G1(s) + G2(s) + . . . that are sampled
separately

u(k)

u(k)

y(k)

y(k)

G1(s)

G1(s)

G2(s)

G2(s)

\

ZOH

ZOH

ZOH
∑

∑
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Transformation of Poles via ZOH Sampling: zi = esi h

ωN

−ω N

−ω N

−ω N

ωN

ωN

s z

Note: The stability properties are preserved by ZOH sampling! 30



New Evidence of the Alias Problem

Several points in the s-plane are mapped into the same point in the
z-plane. The map is not bijective

x

x

x

p

3π / h

π / h

    −3π / h

    − π / h
    S0

x x

x

p1

    p1

    p2

    p2
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Transformation of Zeros via Sampling

• More complicated than for poles

• Extra zeros may appear in the sampled system

• There can be zeros outside the unit circle (non-minimum phase)
even if the continuous system has all the zeros in the left half
plane

• For short sampling periods

zi ( esi h
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ZOH Sampling of a Second Order System

Second order continuous-time system with complex poles:

G(s) =
ω 2

0

s2 + 2ζ ω 0s +ω 2
0

, ζ < 1

Im

Re

ϕ

ω 0

• Larger ω 0 [ faster system response

• Smaller ϕ [ larger damping. Relative damping ζ = cosϕ .

• Common control design choice: ζ = cos 45○ ( 0.7
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Sampled Second Order System

The poles of the sampled system are given by

z2 + a1z + a2 = 0

where
a1 = −2e−ζ ω0h cos

(

√

1− ζ 2 ω 0h
)

a2 = e−2ζ ω0h
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Sampled Second Order System
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Examples in Matlab

>> % From state space system to pulse transfer function

>> A = [0 1; 0 0];

>> B = [0; 1];

>> C = [1 0];

>> D = 0;

>> contsys = ss(A,B,C,D);

>> h = 1;

>> discsys = c2d(contsys,h);

>> tf(discsys) % pulse transfer function

>> zpk(discsys) % factored pulse transfer function

>> % Bode and Nyquist diagrams

>> s = tf(’s’); G = 1/(s^2+1.4*s+1);

>> H = c2d(G,1);

>> bode(G,H)

>> nyquist(G,H)

>> % Sampling of a second-order transfer function

>> G = 1/(s^2+s+1);

>> h = 0.1;

>> H = c2d(G,h)

>> pzmap(H)
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