Lecture 6: Sampling of Linear Systems

Sampling of Linear Systems

Real-Time Systems, Lecture 6 [IFAC PB Ch. 1, Ch. 2, and Ch. 3 (to pg 23)]

Anton Cervin e Effects of Sampling

2 February 2016 e Sampling a Continuous-Time State-Space Model

Lund University, Department of Automatic Control e Difference Equations

e State-Space Models in Discrete Time

u(t) y(t)
The main text material for this part of the course is: /\
t t
Wittenmark, Astrém, Arzén: IFAC Professional Brief: Computer Control: u(t) (@)
Process
An Overview, (Educational Version 2016) (“IFAC PB") l
Sampler
e Summary of the digital control parts of Astrém and Wittenmark: w, Vk
Computer Controlled Systems (1997) e D-A H Computer |“| AD

e Some new material

Chapters 10 and 11 are not part of this course (but can be useful in other

courses, e.g., Predictive Control) e System theory analogous to continuous-time linear systems

Chapters 7, 13 and 14 partly overlap with RTCS. e Better control performance can be achieved (compared to
discretization of continuous-time design)
e Problems with aliasing, intersample behaviour

Sampling Hold Devices

oo 1 Zero-Order Hold (ZOH) almost always used. DA-converter acts as hold
device = piecewise constant control signals

e
‘ 4— Algorithm ﬂ—— Process
> First-Order Hold (FOH):

e Signal between the conversions is a linear extrapolation

t — kh

F(t) = F(kh) +

(F(kh+ h) — f(kh)) kh<t<kh+h

AD-converter acts as sampler
e Advantages:

e Better reconstruction

e Continuous output signal
— e Disadvantages:
Regular/periodic sampling: o f(kh+ h) must be available at time kh
L e More involved controller design
e Constant sampling interval h

L. e Not supported by standard DA-converters
e Sampling instants: t, = kh



Hold Devices amic Effects of Sampling

Zero order hold

First order hold

In IFAC PB there are quite a lot of results presented for the first-order
hold case. These are not part of this course.

Time

o Sampling frequency [rad/s]: ws =27 /h
e Nyquist frequency [rad/s]: wy = ws/2

Frequencies above the Nyquist frequency are folded and appear as
low-frequency signals.

Calculation of “fundamental alias” for an original frequency w;:

w = |(w1 +wn) mod (ws) — wn|

Analog low-pass filter needed to remove high-frequency measurement
noise before sampling

Example:
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(a), (¢): A =09 Hz, fy =0.5 Hz = f,ji,s = 0.1 Hz
(b), (d): 6th order Bessel prefilter with bandwidth fg = 0.25 Hz

More on aliasing in Lecture 11.

Continuous time control

Discrete time control
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Sampling of high-frequency measurement noise may create new

frequencies!

— Real World Example

Feed water heating in a ship boiler
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Sample and Hold Approximation Design Approaches for Computer Control

o R o nR . . . Continuous-Time Process Model
A sampler in direct combination with a ZOH device gives an average

delay of h/2 / \

e Discretized Process Model Control Design in Continuous Time .
. o . . . . . .
Output
. . . . D . . . .
Output J Control Design in Discrete Time Discretized Controller
. . e T e . . . . .

Output J

. . «“ e . . » . . Difference Equation
Guiged Average Delay = h/2 Q/ .

- Software Algorithm
13 14

Design Approaches for Computer Control Sampled Control Theory

Continuous-Time Process Model L

Lecture 8+

-
Computer

//” Lectures 6,7,9 >,

i \ \
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Basic idea: Look at the sampling instances only

Difference Equation e Stroboscopic model

e Look upon the process from the computer’s point of view
Software Algorithm

Control of the arm of a disk drive uc := adin(1)
y := adin(2)
k . =
G(s) = — u := Kx(b/a*uc-y+x)
Js daout (u) Algorithm
Continuous time controller x := x+h*((a-b)*y-a*x)
U(s) = %Uc(s) K2 + by(s) Sampling period h = 0.2/wq
a s+a

Discrete time controller (continuous time design + discretization) I R
g
S

u(ty) =K <§uc(tk) —y(t) +x(tk)>

(i) = x(t) + h((a = by (t) = ax(t4)) |

Input
o
{

(Continuous-time poles placed according to P(s) = s° 4 2uwos? + 2ws + w;)

Time (wyt) 18



Increased Sampling Period Better Performance?

Deadbeat control, h = 1.4/wq

(3) h = 0.5/wo, (b) h = 1.08/wo u(te) = touc(te) + truc(te—1) — soy(tx) — suy(te—1) — nu(te—1)
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Deadbeat: The output reaches the reference value after n samples Lotk 20 e sy (e dhe e o vl off i @smsiier

(n = model order)

No counterpart in continuous time
However, long sampling periods also have problems fue} * () o ; (o}
—k>| D-A |—~| System |—~| AD l—h

Zero-order-hold sampling

e Open loop between samples
e Sensitive to model errors

e Disturbance and reference changes that occur between samples will
remain undetected until the next sample o Let the inputs be piecewise constant

e Look at the sampling points only
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Continuous-Time System Model Sampling a Continuous-Time System

Solve the system equation

Linear time-invariant system model in continuous time: dx(t
Y (t) _ ax(e) + Bu(t)
d dt
Ix
P Ax + Bu from time t to time t under the assumption that v is piecewise constant

J = Cet Du (ZOH sampling)

t
x(t) = e M=% x(t) +/ A=) By(s') ds’
Solution (see basic course in control): t
ot

. _ A(t—ty) A(t—s') g/

t = e X(tk)-'r/ e ds’ Bu(tx) (Bu(ty) const.)
x(t) = e*x(to) + / eAt=7)Bu(r)ds Ju

Jty -0
t = Al ty(g) + / —e” ds Bu(t) (var. changes=1t—s'
y(t) = Ce*x(to) + C/ =7 Bu(r)ds + Du(t) (%) Je—t, (8 ( )

to

t—ty
= Altmx(g) +/ e ds Bu(tx) (change int. limits)
0

Use this to derive a discrete-time model
= O(t, ti)x(te) + T (¢, ti)u(t)
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The General Case Periodic Sampling

Assume periodic sampling, i.e. tx = kh. Then

x(kh+ h) = ®&x(kh) + Tu(kh)
x(tir1) = O(test, t)x(te) + Mtess, te)u(ti) y(kh) = Cx(kh) + Du(kh)
y(t) = Cx(t) + Du(ty) where
where ® — Ah
O(tip1, ty) = et r = /O.heAsdsB

tep1—tk
M(thr1, te) = / e"ds B o . .
0 NOTE: Time-invariant linear system!

No assumption about periodic sampling No approximations
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Example: Sampling of Double Integrator Calculating the Matrix Exponential

Pen and paper for small systems

e 0 1 0 O =L71(sl—A)?
— = X -+ u
dt 00 1
Matlab for large systems (numeric or symbolic calculations)
y= [l 0] X
>> h
Periodic sampling with interval h: S
>> A =[01; 00];
O =e =+ An+ A2H)2 4.
B 10 N 0 h B 1 h >> expm(A*h)
01 00 01
ans =
h2
h(1l s 0 h(s =
SSRGS
o (0 1 1 o 1 h [o, 1]
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Calculating the Matrix Exponential Sampling of System with Time Delay

One can show that

(Ol B A B ;
[0 /]%Xp [0 0] u(t) ——

? i
| |
. . — |
Simultaneous calculation of ® and ' i i |
i i i
>> syms h [ : : :
> A =1[01; 00]; i ! . !
>> B = [0; 1]; i 3 3 3 t
T
>> expm([A B;zeros(1l,size(A)) 0]xh) ]sjizl?gled 1‘“‘ | ._:_
‘ I e—
et = | | | |
e i —
i i i i
[ 1, h, 1/2%h°2] 3 | ! 1
| |
: T T T
L o, L, 1 kh—h kh kh+h kh+2h t
[ 0, 0, 1]
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Sampling of System with Time Delay Sampling of System with Time Delay

Introduce a new state variable z(kh) = u(kh — h)
Input delay 7 < h (assumed to be constant)

Sampled system in state-space form
dx(t)

o = Ax(8)+ Bu(t—7) [ x(kh + h) ] B [ o T ] [x(kh) J N [ To ] (ki)
kh+h -
x(kh + h) — ®x(kh) = / " A gy (5 7)de! 2(kh +h) 0 0 Lalkh) :
kh
Kkh+7 ( kh+h
_ A(kh+h—s") 4! A(kh+h—s') 4t
- /kh € *)ds' B u(kh — h) + /kh+7- e *)as' B u(kh) The approach can be extended also for 7 > h
T rh—7
— Alh-7) / A5 dsB u(kh — h) +/ A5 dsB u(kh) e h < 7 <2h= two extra state variables, etc.
Jo 0
- = '_\’—r Similar techniques can also be used to handle output delays and delays
1 0

that int |'in the plant.
x(kh + h) = dx(kh) + Tyu(kh — h) + Tou(kh) 45 E163 [kl (0 W3 (AL

In continuous-time delays mean infinite-dimensional systems. In
discrete-time the sampled system is a finite-dimensional system

= easier to handle
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Example — Double Integrator with Delay 7 < h Solution of the Discrete System Equation

x(1) = ®x(0) + 'u(0)
x(2) = dx(1) + lu(1)

¢ =M= [ Lo ] = ®2x(0) + ®Tu(0) + lu(1)
01

e e N e |
! Jo 0 1 T T k o k—j—1 p

b= (h—7)2)2 x(k) = ®Fx(0) + Y @k 71T u())
ro:/ e’ dsB = [ ] =

0 h—1 K1

y(k) = CO*x(0) + Y - CO¥ I Tu(j) + Duf(k)
j=0

x(kh -+ h) = dx(kh) + Tyu(kh — h) + Tou(kh)

Two parts, one depending on the initial condition x(0) and one that is a
weighted sum of the inputs over the interval [0, k — 1]
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Stability Stability Regions

The matrix ® can, if it has distinct eigenvalues, be written in the form . . . L. i
In continuous time the stability region is the complex left half plane, i.e,,

A1 * A * the system is asymptotically stable if all the poles are strictly in the left
d=U - Ut Hence &k — U o U-L half plane.
0 A 0 ALK In discrete time the stability region is the unit circle.

The diagonal elements are the eigenvalues of ®.

&k decays exponentially if and only if [\x| < 1 for all k, i.e. if the
eigenvalues of ® are inside the unit circle.

1
This is the stability condition for discrete-time systems /\
Eigenvalues obtained from the characteristic equation \J

det(M — ) =0
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Pulse Response Convolution

1 o 1
0.8] 0.8
0.6 06 O ° °© o
04 04 °. Swedish: Faltning
02 u h 02 °o °
of coooooocoo ﬂ o °© Continuous time:
0 5 10 o 5 10
t
(h+ u)(t) / h(t — s)u(s)ds £>0
0
— — B2
=0 4E) = HE) =T Discrete time:
h(1) = CT h(2) = Cor h(3) = CO?T .
(hxu)(k) =" h(k = j)u(j) k=0,1,...
h(0) = D h(k) = Co*='r k=1,23,... 58
(Continuous-time: h(t) = Ce’*B + D§(t) t>0)
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Solution to the System Equation Difference Equations

The solution to the system equation Difference equation of order n:
y(k)+ay(k—=1)+---4+ayy(k—n) = bulk—1)+---+ byu(k —n)
k—1
y(k) = CO*x(0) + Y CO¥7Tu(j) + Du(k)

j=0

can be written in terms of the pulse response Differential equation of order n:
dny dn—ly dn—lu
y(k) = CO*x(0) + (h = u)(k) din +a P +ooodany = blm"r“"‘rbnu
Two parts, one that depends on the initial conditions and one that is a
convolution between the pulse response and the input signal
39 40

From Difference Equation to State Space Form Controllable Canonical Form

Start with by =1 and b, = --- = b, = 0 in difference equation above Let
Put k — k + 1, and y(k) = z(k): y(k) = biz(k) + byz(k — 1) + - - - + bpz(k — n)
z(k+1)+ayz(k) + -+ apz(k — n+ 1) = u(k) Then (think superposition!)
x(k)=[z(k) z(k—=1) ... z(k—n+1)]" e — 1
; 1 o ... O 0
gives x(k+1) = x(k) + u(k)
z(k +1) —ay —a —ap 1
z(k) 1 0 ... 0 0 Lo 0
x(k+1) = ) = . : x(k) + : u(k) y(k)=1[b1 by ... by]x(k)
z(k—n+2) 1 0 0 which corresponds to
z(k)=[1 0 0]x(k) y(k)+ay(k 1)+ +ay(k—n) = buu(k—1)+---+ byu(k — n)
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By choosing different state variables, different state-space models can be
derived which all describe the same input—output relation

A realization is minimal if the number of states is equal to n.

In the direct form the states are selected as the old values of y together
with the old values of u — non-minimal.

Some realizations have better numerical properties than others, see
Lecture 11.
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>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

State-Space Realizations In Matlab

A = [0 1;0 0]

B = [0;1]

c=1[10]

D=0

contsys = ss(4,B,C,D)

h=0.1

discsys = c2d(contsys,h) % ZOH sampling
pole(discsys)

impulse(discsys)

step(discsys)
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