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Lecture 6: Sampling of Linear Systems

[IFAC PB Ch. 1, Ch. 2, and Ch. 3 (to pg 23)]

• Effects of Sampling

• Sampling a Continuous-Time State-Space Model

• Difference Equations

• State-Space Models in Discrete Time
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Textbook

The main text material for this part of the course is:

Wittenmark, Åström, Årzén: IFAC Professional Brief: Computer Control:

An Overview, (Educational Version 2016) (“IFAC PB”)

• Summary of the digital control parts of Åström and Wittenmark:

Computer Controlled Systems (1997)

• Some new material

Chapters 10 and 11 are not part of this course (but can be useful in other

courses, e.g., Predictive Control)

Chapters 7, 13 and 14 partly overlap with RTCS.
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Sampled Control Theory
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• System theory analogous to continuous-time linear systems

• Better control performance can be achieved (compared to

discretization of continuous-time design)

• Problems with aliasing, intersample behaviour

4



Sampling

ProcessA/D D/AAlgorithm

Computer u
y

AD-converter acts as sampler

A/D

Regular/periodic sampling:

• Constant sampling interval h

• Sampling instants: tk = kh
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Hold Devices

Zero-Order Hold (ZOH) almost always used. DA-converter acts as hold

device ⇒ piecewise constant control signals

First-Order Hold (FOH):

• Signal between the conversions is a linear extrapolation

f (t) = f (kh) +
t − kh

h
(f (kh + h)− f (kh)) kh ≤ t < kh + h

• Advantages:

• Better reconstruction

• Continuous output signal

• Disadvantages:

• f (kh + h) must be available at time kh

• More involved controller design

• Not supported by standard DA-converters
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Hold Devices

0 5 10

−1

0

1

Z
e
r
o
 o

r
d

e
r
 h

o
ld

0 5 10

−1

0

1

F
ir

s
t
 o

r
d

e
r
 h

o
ld

Time

In IFAC PB there are quite a lot of results presented for the first-order

hold case. These are not part of this course.
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Dynamic Effects of Sampling

Continuous time control Discrete time control
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Sampling of high-frequency measurement noise may create new

frequencies! 8



Aliasing
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• Sampling frequency [rad/s]: ωs = 2π/h

• Nyquist frequency [rad/s]: ωN = ωs/2

Frequencies above the Nyquist frequency are folded and appear as

low-frequency signals.

Calculation of “fundamental alias” for an original frequency ω1:

ω = |(ω1 + ωN) mod (ωs)− ωN |
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Aliasing – Real World Example

Feed water heating in a ship boiler
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Prefiltering

Analog low-pass filter needed to remove high-frequency measurement

noise before sampling

Example:
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(a), (c): f1 = 0.9 Hz, fN = 0.5 Hz ⇒ falias = 0.1 Hz

(b), (d): 6th order Bessel prefilter with bandwidth fB = 0.25 Hz

More on aliasing in Lecture 11.
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Time Dependence in Sampled-Data Systems

A-D D-AComputer
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Sample and Hold Approximation

A sampler in direct combination with a ZOH device gives an average

delay of h/2
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Design Approaches for Computer Control

Control Design in Discrete Time

Control Design in Continuous Time .

Discretized Controller

Difference Equation

Software Algorithm

Discretized Process Model

Continuous−Time Process Model
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Design Approaches for Computer Control

Control Design in Discrete Time

Control Design in Continuous Time 

Discretized Controller

Difference Equation

Software Algorithm

Discretized Process Model

Continuous−Time Process Model

Lecture 8

Lectures 6,7,9
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Sampled Control Theory

Algorithm Process

Clock

A-D D-A

Computer

    y(t )    u(t)y(tk ){ }     u(t k){ }

Basic idea: Look at the sampling instances only

• Stroboscopic model

• Look upon the process from the computer’s point of view
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Disk Drive Example

Control of the arm of a disk drive

G (s) =
k

Js2

Continuous time controller

U(s) =
bK

a
Uc(s)− K

s + b

s + a
Y (s)

Discrete time controller (continuous time design + discretization)

u(tk) = K

(
b

a
uc(tk)− y(tk) + x(tk)

)

x(tk+1) = x(tk) + h
(

(a− b)y(tk)− ax(tk)
)

(Continuous-time poles placed according to P(s) = s
3 + 2ω0s

2 + 2ω2
0s + ω

3
0)
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Disk Drive Example

uc := adin(1)

y := adin(2)

u := K*(b/a*uc-y+x)

daout(u)

x := x+h*((a-b)*y-a*x)

Algorithm

Clock

Sampling period h = 0.2/ω0
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Increased Sampling Period

(a) h = 0.5/ω0, (b) h = 1.08/ω0
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Better Performance?

Deadbeat control, h = 1.4/ω0

u(tk) = t0uc(tk) + t1uc(tk−1)− s0y(tk)− s1y(tk−1)− r1u(tk−1)
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Better Performance?

Deadbeat: The output reaches the reference value after n samples

(n = model order)

No counterpart in continuous time

However, long sampling periods also have problems

• Open loop between samples

• Sensitive to model errors

• Disturbance and reference changes that occur between samples will

remain undetected until the next sample
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Sampling of Linear Systems

Look at the system from the point of view of the computer

D-A

Clock

System A-D
    {u(tk )}     y (tk ){ }    y(t)    u(t)

Zero-order-hold sampling

• Let the inputs be piecewise constant

• Look at the sampling points only
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Continuous-Time System Model

Linear time-invariant system model in continuous time:







dx

dt
= Ax + Bu

y = Cx + Du

Solution (see basic course in control):

x(t) = eAtx(t0) +

∫ t

t0

eA(t−τ)Bu(τ)ds

y(t) = CeAtx(t0) + C

∫ t

t0

eA(t−τ)Bu(τ)ds + Du(t)

Use this to derive a discrete-time model
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Sampling a Continuous-Time System

Solve the system equation

dx(t)

dt
= Ax(t) + Bu(t)

from time tk to time t under the assumption that u is piecewise constant

(ZOH sampling)

x(t) = eA(t−tk )x(tk) +

∫ t

tk

eA(t−s′)Bu(s ′) ds ′

= eA(t−tk )x(tk) +

∫ t

tk

eA(t−s′) ds ′ Bu(tk) (Bu(tk) const.)

= eA(t−tk )x(tk) +

∫ 0

t−tk

−eAs ds Bu(tk) (var. change s = t − s ′)

= eA(t−tk )x(tk) +

∫ t−tk

0

eAs ds Bu(tk) (change int. limits)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)

24



The General Case

x(tk+1) = Φ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk)

y(tk) = Cx(tk) + Du(tk)

where

Φ(tk+1, tk) = eA(tk+1−tk )

Γ(tk+1, tk) =

∫ tk+1−tk

0

eAsds B

No assumption about periodic sampling
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Periodic Sampling

Assume periodic sampling, i.e. tk = kh. Then

x(kh + h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh) + Du(kh)

where

Φ = eAh

Γ =

∫ h

0

eAs ds B

NOTE: Time-invariant linear system!

No approximations
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Example: Sampling of Double Integrator

dx

dt
=





0 1

0 0



 x +





0

1



 u

y =


 1 0


 x

Periodic sampling with interval h:

Φ = eAh = I + Ah + A2h2/2 + · · ·

=





1 0

0 1



+





0 h

0 0



 =





1 h

0 1





Γ =

∫ h

0





1 s

0 1









0

1



 ds =

∫ h

0





s

1



 ds =





h2

2
h




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Calculating the Matrix Exponential

Pen and paper for small systems

Φ = L−1 (sI − A)−1

Matlab for large systems (numeric or symbolic calculations)

>> syms h

>> A = [0 1; 0 0];

>> expm(A*h)

ans =

[ 1, h]

[ 0, 1]
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Calculating the Matrix Exponential

One can show that




Φ Γ

0 I



 = exp

(



A B

0 0



 h

)

Simultaneous calculation of Φ and Γ

>> syms h

>> A = [0 1; 0 0];

>> B = [0; 1];

>> expm([A B;zeros(1,size(A)) 0]*h)

ans =

[ 1, h, 1/2*h^2]

[ 0, 1, h]

[ 0, 0, 1]
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Sampling of System with Time Delay

u t( )

t

τ

kh − h kh kh + h     kh + 2h t

Delayed 
signal
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Sampling of System with Time Delay

Input delay τ ≤ h (assumed to be constant)

dx(t)

dt
= Ax(t) + Bu(t − τ)

x(kh + h)− Φx(kh) =

∫ kh+h

kh

eA(kh+h−s′)Bu(s ′ − τ)ds ′

=

∫ kh+τ

kh

eA(kh+h−s′)ds ′ B u(kh − h) +

∫ kh+h

kh+τ

eA(kh+h−s′)ds ′ B u(kh)

= eA(h−τ)

∫
τ

0

eAsdsB

︸ ︷︷ ︸

Γ1

u(kh − h) +

∫ h−τ

0

eAsdsB

︸ ︷︷ ︸

Γ0

u(kh)

x(kh + h) = Φx(kh) + Γ1u(kh − h) + Γ0u(kh)
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Sampling of System with Time Delay

Introduce a new state variable z(kh) = u(kh − h)

Sampled system in state-space form





x(kh + h)

z(kh + h)



 =





Φ Γ1

0 0









x(kh)

z(kh)



+





Γ0

I



 u(kh)

The approach can be extended also for τ > h

• h < τ ≤ 2h ⇒ two extra state variables, etc.

Similar techniques can also be used to handle output delays and delays

that are internal in the plant.

In continuous-time delays mean infinite-dimensional systems. In

discrete-time the sampled system is a finite-dimensional system

⇒ easier to handle
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Example – Double Integrator with Delay τ ≤ h

Φ = eAh =





1 h

0 1





Γ1 = eA(h−τ)

∫
τ

0

eAs ds B =





1 h − τ

0 1









τ 2/2

τ



 =





hτ − τ 2/2

τ





Γ0 =

∫ h−τ

0

eAs ds B =





(h − τ)2/2

h − τ





x(kh + h) = Φx(kh) + Γ1u(kh − h) + Γ0u(kh)
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Solution of the Discrete System Equation

x(1) = Φx(0) + Γu(0)

x(2) = Φx(1) + Γu(1)

= Φ2x(0) + ΦΓu(0) + Γu(1)

...

x(k) = Φkx(0) +

k−1∑

j=0

Φk−j−1Γu(j)

y(k) = CΦkx(0) +

k−1∑

j=0

CΦk−j−1Γu(j) + Du(k)

Two parts, one depending on the initial condition x(0) and one that is a

weighted sum of the inputs over the interval [0, k − 1]
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Stability

The matrix Φ can, if it has distinct eigenvalues, be written in the form

Φ = U







λ1 ∗

. . .

0 λn






U−1. Hence Φk = U







λ1
k ∗

. . .

0 λn
k






U−1.

The diagonal elements are the eigenvalues of Φ.

Φk decays exponentially if and only if |λk | < 1 for all k , i.e. if the

eigenvalues of Φ are inside the unit circle.

This is the stability condition for discrete-time systems

Eigenvalues obtained from the characteristic equation

det(λI − Φ) = 0
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Stability Regions

In continuous time the stability region is the complex left half plane, i.e,,

the system is asymptotically stable if all the poles are strictly in the left

half plane.

In discrete time the stability region is the unit circle.

1

1
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Pulse Response
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x(1) = Γ x(2) = ΦΓ x(3) = Φ2Γ . . .

h(1) = CΓ h(2) = CΦΓ h(3) = CΦ2Γ . . .

h(0) = D h(k) = CΦk−1Γ k = 1, 2, 3, . . .

(Continuous-time: h(t) = CeAtB + Dδ(t) t ≥ 0)
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Convolution

Swedish: Faltning

Continuous time:

(h ∗ u)(t) =

∫ t

0

h(t − s)u(s)ds t ≥ 0

Discrete time:

(h ∗ u)(k) =

k∑

j=0

h(k − j)u(j) k = 0, 1, . . .
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Solution to the System Equation

The solution to the system equation

y(k) = CΦkx(0) +

k−1∑

j=0

CΦk−j−1Γu(j) + Du(k)

can be written in terms of the pulse response

y(k) = CΦkx(0) + (h ∗ u)(k)

Two parts, one that depends on the initial conditions and one that is a

convolution between the pulse response and the input signal
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Difference Equations

Difference equation of order n:

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + · · ·+ bnu(k − n)

Differential equation of order n:

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b1

dn−1u

dtn−1
+ · · ·+ bnu
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From Difference Equation to State Space Form

Start with b1 = 1 and b2 = · · · = bn = 0 in difference equation above

Put k → k + 1, and y(k) = z(k):

z(k + 1) + a1z(k) + · · ·+ anz(k − n + 1) = u(k)

x(k) = [ z(k) z(k − 1) . . . z(k − n + 1) ]
T

gives

x(k + 1) =









z(k + 1)

z(k)

...

z(k − n + 2)









=









−a1 −a2 . . . −an

1 0 . . . 0
. . .

...

1 0









x(k) +









1

0
...

0









u(k)

z(k) = [ 1 0 . . . 0 ] x(k)
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Controllable Canonical Form

Let

y(k) = b1z(k) + b2z(k − 1) + · · ·+ bnz(k − n)

Then (think superposition!)

x(k + 1) =









−a1 −a2 . . . −an

1 0 . . . 0
. . .

...

1 0









x(k) +









1

0
...

0









u(k)

y(k) = [ b1 b2 . . . bn ] x(k)

which corresponds to

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + · · ·+ bnu(k − n)
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State-Space Realizations

By choosing different state variables, different state-space models can be

derived which all describe the same input–output relation

A realization is minimal if the number of states is equal to n.

In the direct form the states are selected as the old values of y together

with the old values of u – non-minimal.

Some realizations have better numerical properties than others, see

Lecture 11.
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In Matlab

>> A = [0 1;0 0]

>> B = [0;1]

>> C = [1 0]

>> D = 0

>> contsys = ss(A,B,C,D)

>> h = 0.1

>> discsys = c2d(contsys,h) % ZOH sampling

>> pole(discsys)

>> impulse(discsys)

>> step(discsys)
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