
Synchronization and Communication (part II)

Real-Time Systems, Lecture 4

Martina Maggio

26 January 2016

Lund University, Department of Automatic Control

Content

[Real-Time Control System: Chapter 4]

1. Deadlock

2. Priority Inversion

3. Message Passing

2

Deadlock

Deadlock

Improper allocation of common resources may cause deadlocks.

Example: A and B both need access to two common resources, protected

by the semaphores R1 and R2 (initialized to 1). May cause deadlock.

Process A

...

wait(R1);

wait(R2);

...

signal(R2);

signal(R1);

...

Process B

...

wait(R2);

wait(R1);

...

signal(R1);

signal(R2);

...

4

Deadlock Handling

• Deadlock Prevention:

– e.g., hierarchical resource allocation.

• Deadlock Avoidance (at runtime):

– e.g., priority ceiling protocol.

• Deadlock Detection and Recovery (at runtime):

– e.g., using model checking.

5

Deadlock: Necessary Conditions

Conditions that must happen for a deadlock to occurr:

1. Mutual exclusion: only a bounded number of processes can use a

resource at a time;

2. Hold and wait: processes must exist which are holding resources

while waiting for other resources;

3. No preemption: resources can only be released voluntarily by a

process;

4. Circular wait: a circular chain of processes must exist such that each

process holds a resource that is requested by the next process in the

chain.

6



Deadlock Prevention

To prevent deadlock it is possible to remove one of the four conditions:

1. Mutual exclusion – usually unrealistic;

2. Hold and wait – require that the processes preallocate all resources

before execution or at points when they have no other resources

allocated;

3. No preemption – forced resource deallocation;

4. Circular wait – ensure that resources always are allocated in a fixed

order.

7

Hierarchical Resource Allocation

Pyramidal resource allocation. A resource belongs to one of the classes

Ri where i = 1 . . . n. A process must reserve resources following the

classes order. If it has a resource of order m it cannot reserve a resource

of order p where p < m.

Process A

...

wait(R1);

wait(R2);

...

signal(R2);

signal(R1);

...

Process B

...

wait(R1);

wait(R2);

...

signal(R2);

signal(R1);

...

8

Priority Inversion

Priority Inversion

Priority inversion can happen when a high-priority process becomes

blocked by a lower priority process and there is no common resource

involved between the two processes.

Controller

Priority 30 (highest)

Plot-Process

Priority 10 (lowest)

Plot-Monitor

OpCom

Priority 20

(1) Plot-Process enters Plot-Monitor; (2) an interrupt cause OpCom to

execute; (3) an interrupt cause Controller to execute; (4) Controller tries

to enter Plot-Monitor and is blocked, because the monitor is held by

Plot-Process, but Plot-Process cannot execute because OpCom has

higher priority. OpCom is blocking Controller.

10

Priority Inversion

Solutions:

• Priority Inheritance;

• Priority Ceiling Protocol;

• Immediate Inheritance.

11

Priority Inheritance

During the execution of Enter, if the monitor is occupied then the

priority of the process holding the monitor is raised to the priority of the

process that called Enter. The priority is reset when the process holding

the monitor calls Leave. This is for example how the problem is solved in

STORK.

In the example, when Controller tries to enter Plot-Monitor, the priority of

Plot-Process is raised to 10 (highest), there is a context switch to

Plot-Process and as soon as Plot-Process relases the lock, there is a

context switch to Controller. When Controller releases the CPU, OpCom

can be executed.

12



Priority Inheritance

P: Plot-Process; O: OpCom; C: Controller.

Without Priority Inheritance

in monitorP

O

C

With Priority Inheritance

13

Example: Mars Pathfinder 1997

After a while the spacecraft experienced total system resets, resulting in

losses of meteorological data. Reason:

• a mutex-protected shared memory area for passing information;

• a high priority bus management task, frequently passing data in/out;

• an infrequent data gathering task at low priority, entering data into

the memory;

• a third communication task at medium priority, not accessing the

shared memory;

• occasionally, the situation arised where the mutex was held by the

low priority task, the high priority task was blocked on the mutex,

and the medium priority task was executing, preventing the low

priority task from leaving the mutex.

Classical Priority Inversion Situation

14

Example: Solution

• VxWorks from Wind River Systems;

• binary mutex semaphores with an optional initialization argument

that decides if priority inheritance should be used or not;

• upload of code that modified the symbol tables of the Pathfinder so

that priority inheritance was used.

15

The Priority Ceiling Protocol

L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols:

An Approach to Real-Time Synchronization, IEEE Transactions on

Computers, Vol. 39, No. 9, 1990

Restrictions on how we can lock (Wait, EnterMonitor) and unlock

(Signal, LeaveMonitor) resources:

• a task must release all resources between invocations;

• the computation time that a task i needs while holding semaphore s

is bounded. csi,s = the time length of the critical section for task i

holding semaphore s;

• a task may only lock semaphores from a fixed set of semaphores

known a priory. uses(i) = the set of semaphores that may be used

by task i .

16

The Priority Ceiling Protocol

The ceiling of a semaphore, ceil(s), is the priority of the highest priority

task that uses the semaphore; pri(i) is the priority of task i . During

run-time:

• if a task i wants to lock a semaphore s, it can only do so if pri(i) is

strictly higher than the ceilings of all semaphores currently locked

by other tasks;

• if not, task i will be blocked (task i is said to be blocked on the

semaphore, S⇤, with the highest priority ceiling of all semaphores

currently locked by other jobs and task i is said to be blocked by the

task that holds S⇤);

• when task i is blocked on S⇤, the task currently holding S⇤ inherits

the priority of task i .

17

The Priority Ceiling Protocol

Properties:

• deadlock free;

• a given task i is delayed at most once by a lower priority task;

• the delay is a function of the time taken to execute the critical

section.

18



The Priority Ceiling Protocol

• Task A: priority 10 — Task B: priority 9

Task A

...

lock(s1);

lock(s2);

...

unlock(s1);

unlock(s2);

...

Task B

...

lock(s2);

lock(s1);

...

unlock(s1);

unlock(s2);

...

• ceil(s
1

) = 10 — ceil(s
2

) = 10

19

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
0

: B starts executing.

20

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
1

: B attempts to lock s
2

, it succeeds since no lock is held by another

task.

21

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
2

: A preempts B.

22

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
3

: A tries to lock s
1

and fails since A’s priority (10) is not stricly higher

than the ceiling of s
2

(10) that is held by B. A is blocked by B on s
2

.

The priority of B is raised to 10.

23

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
4

: B attempts to lock s
1

. It succeeds since there are no locks held by

any other task.

24



The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
5

: B unlocks s
1

.

25

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
6

: B unlocks s
2

. The priority of B is lowered to the original priority (9),

A preempts B, attempts to lock s
1

and succeeds.

26

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
7

: A attempts to lock s
2

and succeeds.

27

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
8

: A unlocks s
2

.

28

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

t
8

: A unlocks s
1

.

29

The Priority Ceiling Protocol

• Task A: priority 10 — Task B: priority 9 — Task C: priority 8

Task A

...

lock(s1);

...

unlock(s1);

...

...

...

Task B

lock(s2);

...

lock(s3);

...

unlock(s3);

...

unlock(s2);

Task C

lock(s3);

...

lock(s2);

...

unlock(s2);

...

unlock(s3);

• ceil(s
1

) = 10 — ceil(s
2

) = 9 — ceil(s
3

) = 9

30



The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
0

: C starts executing and locks s
3

.

31

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
1

: B preempts C.

32

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
2

: B tries to lock s
2

and fails. The priority of B (9) is not strictly higher

than the ceiling of s
3

(9) that is held by C. B blocks on s
3

(which means

that B is blocked by C). C inherits the priority of B (9).

33

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
3

: A preempts C and tries to lock s
1

and succeeds. The priority of A

(10) is higher than the ceiling of s
3

, which is locked (9).

34

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
4

: A completes. C resumes and tries to lock s
2

and succeeds (C itself is

the holder of the lock on s
3

.

35

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
5

: C unlocks s
2

.

36



The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
6

: C unlocks s
3

and gets back his basic priority (8). B preempts C and

attempts to lock s
2

and succeeds. Then B locks s
3

and unlocks s
3

and s
2

.

37

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
7

: B completes and C is resumed.

38

The Priority Ceiling Protocol

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

t
8

: C completes.

39

The Priority Ceiling Protocol

• A is never blocked;

• B is blocked by C during the intervals [t
2

, t
3

] and [t
4

, t
6

]. However,

B is blocked for no more than the duration of one time critical

section of the lower priority task C even though the actual blocking

occurs over disjoint time intervals.

40

The Priority Ceiling Protocol

General Properties:

• with ordinary priority inheritance, a task i can be blocked for at

most the duration of min(n,m) critical sections, where n is the

number of lower priority tasks that could block i and m is the

number of semaphores that can be used to block i ;

• with the priority ceiling inheritance, a task i can be blocked for at

most the duration of one longest critical section;

• sometimes priority ceiling introduces unnecessary blocking but the

worst-case blocking delay is much less than for ordinary priority

inheritance.

41

The Immediate Inheritance Protocol

• When a task obtains a lock the priority of the task is immediately

raised to the ceiling of the lock;

• the same worst-case timing behavior as the priority ceiling protocol;

• easy to implement;

• on a single-processor system it is not necessary to have any queues

of blocked tasks for the locks (semaphores, monitors) – tasks

waiting to acquire the locks will have lower priority than the task

holding the lock and can, therefore be queued in ReadyQueue;

• also known as the Priority Ceiling Emulation Protocol or the Priority

Protect Protocol.

42



[JAVA] Priority Inheritance

Priority inheritance is a common, but not mandatory, feature of most

Java implementations.

The Real-Time Java Specification requires that the priority inheritance

protocol is implemented by default. The priority ceiling protocol is

optional.

43

Message Passing

Mailbox Communication

A process/thread communicates with another process/thread by sending

a message to it.

Synchronization models:

• Asynchronous: the sender process proceeds immediately after

having sent a message. Requires bu↵er space for sent but unread

messages. Used in the course.

• Synchronous: the sender proceeds only when the message has been

received. Rendez-vous.

• Remote Invocation: the sender proceeds only when a reply has

been received from the receiver process. Extended rendez-vous.

Remote Procedure/Method Call (RPC/RMC).

45

Naming Schemes

• Direct naming:

send "message" to "process"

• Indirect naming:

send "message" to "mailbox"

With indirect naming di↵erent structures are possible:

(*) many to one, (*) many to many, (*) one to one, (*) one to many.

46

Message Types

• System- or user-defined data structures;

• The same representation at the sender and at the receiver;

• Shared address space (pointer, copy data).

47

Message Bu↵ering

Asynchronous message passing requires bu↵ering.

The bu↵er size is always bounded.

A process is blocked if it tries to send to a full mailbox.

Problematic for high-priority processes.

The message passing system must provide a primitive that only sends a

message if the mailbox has enough space.

Similarly, the message passing system must provide a primitive that

makes it possible for a receiver process to test if there is a message in the

mailbox before it reads.

48



[JAVA] Message Passing

The se.lth.cs.realtime.event package provides support for

mailboxes:

• asynchronous message passing;

• both direct naming and indirect naming can be implemented.

However, in most examples one assumes that each thread (e.g., a

consumer threads) contains a mailbox for incoming messages.

49

[JAVA] Messages

Messages are implemented as instances of objects that are subclasses to

RTEvent. Messages are always time-stamped.

Constructors:

• RTEvent(): Creates an RTEvent object with the current thread as

source and a time-stamp from the current system time;

• RTEvent(long ts): Creates an RTEvent object with the current

thread as source and with the specified time stamp.

• RTEvent(java.lang.Object source): Creates an RTEvent

object with the specified source object and a time-stamp from the

current system time.

• RTEvent(java.lang.Object source, long ts): Creates an

RTEvent object with the specified source object and time stamp.

50

[JAVA] Messages

A time-stamp supplied to the constructor may denote the time when

input was sampled, rather than when an output event was created from a

control block or digital filter.

The source is by default the current thread, but a supplied source may

denote some passive object like a control block run by an external thread.

51

[JAVA] Messages

Methods:

• getSource(): returns the source object of the RTEvent;

• getTicks(): returns the event’s time stamp in number of

system-dependent ticks;

• getSeconds(): returns the timestamp in seconds;

• getMillis(): returns the timestamp in milliseconds.

52

[JAVA] Mailboxes

Mailboxes (message bu↵ers) implemented by the class RTEventBuffer.

Synchronized bounded bu↵er with both blocking and non-blocking

methods for sending (posting) and reading (fetching) messages. The

class attributes are declared protected in order to make it possible to

create subclasses with di↵erent behavior.

Constructor:

• RTEventBuffer(int maxSize)

53

[JAVA] Mailboxes

Methods:

• doPost(RTEvent e): adds an RTEvent to the queue, blocks caller

if the queue is full;

• tryPost(RTEvent e): Adds an RTEvent to the queue, without

blocking if the queue is full; returns null if the bu↵er is non-full, the

event e otherwise;

• doFetch(): returns the next RTEvent in the queue, blocks if none

available;

• tryFetch(): returns the next available RTEvent in the queue, or

null if the queue is empty;

• awaitEmpty(): waits for bu↵er to become empty;

• awaitFull(): waits for bu↵er to become full;

• isEmpty(): checks if bu↵er is empty;

• isFull(): checks if bu↵er is full.

54



[JAVA] Producer-Consumer

1 class Producer extends Thread {

2 Consumer receiver;

3 MyMessage msg;

4

5 public Producer(Consumer theReceiver) {

6 receiver = theReceiver;

7 }

8

9 public void run() {

10 while (true) {

11 char c = getChar();

12 msg = new MyMessage(c);

13 receiver.putEvent(msg);

14 }

15 }

16 }

55

[JAVA] Producer-Consumer

1 class Consumer extends Thread {

2 private RTEventBuffer inbox;

3

4 public Consumer(int size) { inbox = new RTEventBuffer(size); }

5 public void putEvent(MyMessage msg) { inbox.doPost(msg); }

6

7 public void run() {

8 RTEvent m;

9 while (true) {

10 m = inbox.doFetch();

11 if (m instanceof MyMessage) {

12 MyMessage msg = (MyMessage) m ;

13 useChar(msg.ch);

14 } else {

15 // Handle other messages

16 };

17 }

18 }

19 }

56

Message Passing: add-ons

• Selective waiting: a process is only willing to accept messages of a

certain category from a mailbox or directly from a set of processes

(like Ada).

• Time out: time out on receiver processes.

• Priority-sorted mailboxes: urgent messages have priority over

non-urgent messages.

57

[LINUX] Mailboxes

Mailbox communication is supported in a number of ways in Linux. One

possibility is to use pipes, named pipes (FIFOs), or sockets, directly.

Another possibility is POSIX Message Passing. Very similar in

functionality to the Mailbox system already presented.

Several other alternatives, like D-Bus

http://www.freedesktop.org/wiki/Software/dbus

58

Message Passing (summary)

Can be used both for communication and synchronization.

Using empty messages a mailbox corresponds to a semaphore.

Well suited for distributed systems.

59

Passing objects through a bu↵er

1 public class Buffer {

2 private Object data;

3 private boolean full = false;

4 private boolean empty = true;

5

6 public synchronized void put(Object inData) {

7 while (full) {

8 try {

9 wait();

10 } catch (InterruptedException e) { e.printStackTrace(); }

11 }

12 data = inData;

13 full = true;

14 empty = false;

15 notifyAll();

16 }

60



Passing objects through a bu↵er

17 public synchronized Object get() {

18 while (empty) {

19 try {

20 wait();

21 } catch (InterruptedException e) { e.printStackTrace(); }

22 }

23 full = false;

24 empty = true;

25 notifyAll();

26 return data;

27 }

28 }

61

Passing objects through a bu↵er

Sender Thread:

1 public void run() {

2 Object data = new Object();

3 while (true) {

4 // Generate data

5 b.put(data);

6 }

7 }

Receiver Thread:

1 public void run() {

2 Object data;

3 while (true) {

4 data = b.get();

5 // Use data

6 }

7 }

62

Passing objects through a bu↵er

Very dangerous. The object reference in the receiver thread points at the

same object as the object reference in the sender thread. All

modifications will be done without protection.

Approach 1: New objects

1 public void run() {

2 Object data = new Object();

3 while (true) {

4 // Generate data

5 b.put(data);

6 data = new Object();

7 }

8 }

63

Passing objects through a bu↵er

Approach 2: Copying in the bu↵er

1 public synchronized void put(Object inData) {

2 while (full) {

3 try {

4 wait();

5 } catch (InterruptedException e) { e.printStackTrace(); }

6 }

7 data = inData.clone(); // generate a copy of the data

8 full = true;

9 empty = false;

10 notifyAll();

11 }

64

Passing objects through a bu↵er

Approach 3: Immutable objects

• An immutable object is an object that cannot be modified once it

has been created.

• An object is immutable if all data attributes are declared private and

no methods are declared that may set new values to the data

attributes.

• The sender sends immutable objects. It is not possible for the user

to modify them in any dangerous way.

65


