Updated solutions to Problems 2.4, 4.1, and 6.1
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Figure 2.1 Computer-controlled system.

Consider the computer-controlled system in Fig. 2.1. The P-controller should
execute with the sampling interval 2 = 0.5 s, and the controller gain is given
by K = 2.

. Consider the following implementation of the controller:

LOOP
y = readInput();
u = -Kxky;
writeOutput (u);
waitForNextPeriod() ;
END;

Assume that the execution time of the controller is negligible. Show that
the closed-loop system is stable.

. Now consider the following implementation of the controller:

LOOP
writeOutput (u);
y = readInput();

u = -Kx*y;
waitForNextPeriod() ;
END;

Will the closed-loop system still be stable?

. Consider again the implementation from subproblem a, i.e.:

LOOP
y = readInput();
u = -Kxy;
writeOutput (u);
waitForNextPeriod();
END;

Assume now that the execution time of the controller is not negligible, i.e.
that there is a delay, L, between readInput () and writeOutput (u). Assum-
ing that L is constant and L < h, what is the largest value of L for the
system to be stable?



Hint: The stability conditions for a second-order discrete-time system with
the characteristic polynomial A(z) = 22 + a1z + ay are given by

as <1

as >—1+a;

as >—1—aq
Solution

a. Sampling the process using the table “Zero-order hold sampling of a continuous-
time system with transfer function G(s)” gives

0.6321
H(z) = —202"
(2) = 03679

The closed-loop system is given by

KH(2) 1.264
H = =
() =TT KHE ~ 2308964

The pole is located in —0.8964, inside the unit circle, so the closed-loop
system is stable.

b. The sampled process, including a one sample delay, is now given by

0.6321
Hz)=— ——
(@) = z—03679)
The closed-loop system is given by
1.264

H, (Z) =

22 —0.3679z + 1.264

The poles are located in 0.1836 + 1.1092i, i.e., outside the unit circle, so the
closed-loop system in unstable.

c. We start by writing the continuous-time system on state-space form, i.e.,

dx(t)/dt = —2x(t) + 2u(¢)
y(t) = x(2)

The computational delay is equivalent to a constant input delay, i.e., the
continuous-time system will be

dx(t)/dt = —2x(t) + 2u(t — L)
y(t) = x(2)

The ZOH-sampled equivalent of this, assuming that L < A is

x(kh + h) = ®x(kh) + Tou(kh) + T'iu(kh — h)
y(kh) = x(kh)



4.1

where
B = o2k — o1

h—L
Iy= 2/ e 2ds =1— 21
0
L
I = 26—2(h—L)/ o255 = 2L-1 _ p-1
0

Applying the control law u(k) = —2y(k) = —2x(k) gives the closed loop
system

x(k+1) =elx(k) —2(1 — 2F Nx(k) —2(e2 1 — e Hx(k — 1)
The characteristic equation is hence
2+ 21— —e 4202 — e
Introducing @ = e?L~1, the conditions for stability can be written
2w —et) <1

2@—e1)>-14+ 21 -w)—e)
2—e)>-1-(21-—w)—e)

From this follows that

a)<1+ -1
= e
2

S 1+e!
4

The first inequality leads to
2L — 1 < log(1/2 4+ 1) = —0.1417
from which follows that
L < 0.4291

From the second inequality we have that
2L — 1> log(1/4+e'/4) = —1.0730
from which follows that

L > —0.0365
Hence, the largest delay L for which the system is stable is L = 0.4291.

Assuming the sampling interval A, use the various methods below to deter-
mine discrete-time approximations of the stable transfer function
a

G(s) = , a>0
s+a

For what values of % is the discrete-time system stable? For what values of
h is the pole on the positive real axis? (What is the qualitative behavior of
the discrete-time system if the pole is on the negative real axis?)



a. Forward difference (Euler’s method)
b. Backward difference
c. Tustin’s method
d. Tustin’s method with prewarping and warping frequency w; = a rad/s
Solution
a. Euler’s method implies a translation
-1
s =7 A
We get
a ah

H(z) =G(s) =

2271+a=z+(ah—1)

The discrete-time pole is located in z = 1 — ah. The system is stable if the
pole is inside the unit circle. This is the case for h < %

For h < % the pole ends up on the positive real axis, and the discrete-
time system will have a somewhat similar behavior to the continuous-time
system. For h > %, the pole will be on the negative real axis, and the system
will oscillate — completely unlike the continuous system.

The backward difference implies a translation
-1
$'= Zzh
We get
a zah

H(z) =G(s) = =1iq 2(1+ah)-1

The discrete-time pole is located in z = ﬁ The system is stable and the
pole is on the positive real axis for all values of A.

. We use s’ = %Z—} and obtain
h(z+1) ah(z+1)
H = G / = a = a =
(2) (5 %;_T}"'a 2(z—1)+ah(z+1) (24 ah)z+ (ah —2)

The discrete-time pole is located in z = g;gz The system is stable for all

values of A, since

|24 <1 & -2<2<2+2ah

which holds for all positive values of a and A.
The pole ends up on the positive real axis for iz < %

d. We use s’ = a4 e—1 = 22T 1 and obtain
tan(ah/2)z+1 yz+1
HZ)=G@)=—2 -1

%’z—l_l_ lz—1+1
yz+1 ~ yz+1
y(z+1) _ y(z+1)

(z—1)+y(z+1) (@A+y)z+y-—-1
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The discrete-time pole is thus located in

1-y 1-—tan(ah/2) 141—(1+tan(ah/2)) 2 1
1+y 1+tan(ah/2) 1+ tan(ah/2) ~ tan(ah/2) +1

zZ =

which is a real number Va € R,h > 0. If we analyze the first term, it is
easy to see that it goes from —oo to co by changing a and/or A within their
domains. If we limit the analysis for a while in the range 0 < ah < 37/2
(since it is the domain of Z), we can see that Z is monotonically decreasing

dz sec? (%)

dah (tan (%) + 1)2

In addition, we know that for ah = 0 then z = 1, and for ah = 7/2 then
Z = —oo. The limit value for a is then the one that gives Zz = —1, i.e., when
ah =r.

In other words, we can say that the discrete-time system is asymptotically
stable whenever 0 < ah < 7. Since the value Z is a periodic function it is
easy to extend the result as 2k7 < ah < (2k + 1)z, with £ € N (recall that
a>0and h > 0).

Figure 4.2 illustrates the plot of z as a function of ah.
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Figure 4.2 Plot of Z as a function of ah.

Given the analysis above, it is easy to say that the eigenvalue ends up on
the positive real axis when 2k7 < ah < 2kz + 7 /2 with k € N.

Consider the task set below.

’ Task name ‘ T ‘ D; ‘ C;

A 10 | 2
B 5
C 20 | 10




a. Assign priorities to the tasks according to the rate-monotonic principle.
Draw the schedule assuming worst-case conditions, i.e., the tasks are re-
leased simultaneously and the actual execution times are equal to the worst-
case execution times. Do the tasks meet their deadlines?

b. Assign priorities to the tasks according to the deadline-monotonic principle.
Draw the schedule assuming worst-case conditions. Do the tasks meet their
deadlines?

Solution

a. The tasks are given the following priorities:

’ Task name ‘ T; ‘ Priority

A 10 | Medium
B 5 | High
C 20 | Low

The schedule is shown in Figure 6.3. The worst-case response times of the
tasks are R4 =3, Rg =2, R¢c =9, i.e., task A will not meet its deadlines.
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Figure 6.3 Schedule with rate-monotonic priority assignments.

b. The tasks are given the following priorities:

Task name ‘ D; ‘ Priority

A 2 | High
B 4 | Medium
C 10 | Low

The schedule is shown in Figure 6.4. The worst-case response times of the
tasks are R4 =1, Rg = 3, R¢ =9, i.e. all tasks will meet their deadlines.
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Figure 6.4 Schedule with deadline-monotonic priority assignments.



