
 

 

 

 

 

Updated solutions to Problems 2.4, 4.1, and 6.1 
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Figure 2.1 Computer-controlled system.

2.4 Consider the computer-controlled system in Fig. 2.1. The P-controller should

execute with the sampling interval h = 0.5 s, and the controller gain is given
by K = 2.

a. Consider the following implementation of the controller:

LOOP

y = readInput();

u = -K*y;

writeOutput(u);

waitForNextPeriod();

END;

Assume that the execution time of the controller is negligible. Show that

the closed-loop system is stable.

b. Now consider the following implementation of the controller:

LOOP

writeOutput(u);

y = readInput();

u = -K*y;

waitForNextPeriod();

END;

Will the closed-loop system still be stable?

c. Consider again the implementation from subproblem a, i.e.:

LOOP

y = readInput();

u = -K*y;

writeOutput(u);

waitForNextPeriod();

END;

Assume now that the execution time of the controller is not negligible, i.e.

that there is a delay, L, between readInput() and writeOutput(u). Assum-

ing that L is constant and L < h, what is the largest value of L for the
system to be stable?
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Hint: The stability conditions for a second-order discrete-time system with

the characteristic polynomial A(z) = z2 + a1z+ a2 are given by

a2 < 1

a2 > −1+ a1

a2 > −1− a1

Solution

a. Sampling the process using the table “Zero-order hold sampling of a continuous-

time system with transfer function G(s)” gives

H(z) =
0.6321

z− 0.3679

The closed-loop system is given by

Hcl(z) =
KH(z)

1+ KH(z)
=

1.264

z+ 0.8964

The pole is located in −0.8964, inside the unit circle, so the closed-loop
system is stable.

b. The sampled process, including a one sample delay, is now given by

H(z) =
0.6321

z(z− 0.3679)

The closed-loop system is given by

Hcl(z) =
1.264

z2 − 0.3679z+ 1.264

The poles are located in 0.1836±1.1092i, i.e., outside the unit circle, so the
closed-loop system in unstable.

c. We start by writing the continuous-time system on state-space form, i.e.,

dx(t)/dt = −2x(t) + 2u(t)

y(t) = x(t)

The computational delay is equivalent to a constant input delay, i.e., the

continuous-time system will be

dx(t)/dt = −2x(t) + 2u(t− L)

y(t) = x(t)

The ZOH-sampled equivalent of this, assuming that L ≤ h is

x(kh+ h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h)

y(kh) = x(kh)
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where

Φ = e−2h = e−1

Γ0 = 2

∫ h−L

0

e−2sds = 1− e2L−1

Γ1 = 2e
−2(h−L)

∫ L

0

e−2sds = e2L−1 − e−1

Applying the control law u(k) = −2y(k) = −2x(k) gives the closed loop
system

x(k+ 1) = e−1x(k) − 2(1− e2L−1)x(k) − 2(e2L−1 − e−1)x(k− 1)

The characteristic equation is hence

z2 + (2(1− e2L−1) − e−1)z+ 2(e2L−1 − e−1)

Introducing ω = e2L−1, the conditions for stability can be written

2(ω − e−1) < 1

2(ω − e−1) > −1+ (2(1−ω ) − e−1)

2(ω − e−1) > −1− (2(1−ω ) − e−1)

From this follows that

ω <
1

2
+ e−1

ω >
1+ e−1
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The first inequality leads to

2L − 1 < lo�(1/2+ e−1) = −0.1417

from which follows that

L < 0.4291

From the second inequality we have that

2L − 1 > lo�(1/4+ e−1/4) = −1.0730

from which follows that

L > −0.0365

Hence, the largest delay L for which the system is stable is L = 0.4291.

4.1 Assuming the sampling interval h, use the various methods below to deter-

mine discrete-time approximations of the stable transfer function

G(s) =
a

s+ a
, a > 0

For what values of h is the discrete-time system stable? For what values of

h is the pole on the positive real axis? (What is the qualitative behavior of
the discrete-time system if the pole is on the negative real axis?)

3



a. Forward difference (Euler’s method)

b. Backward difference

c. Tustin’s method

d. Tustin’s method with prewarping and warping frequency ω 1 = a rad/s

Solution

a. Euler’s method implies a translation

s′ =
z− 1

h
We get

H(z) = G(s′) =
a

z−1
h
+ a

=
ah

z+ (ah− 1)

The discrete-time pole is located in z = 1− ah. The system is stable if the
pole is inside the unit circle. This is the case for h < 2

a
.

For h < 1
a
the pole ends up on the positive real axis, and the discrete-

time system will have a somewhat similar behavior to the continuous-time

system. For h > 1
a
, the pole will be on the negative real axis, and the system

will oscillate – completely unlike the continuous system.

b. The backward difference implies a translation

s′ =
z− 1

zh
We get

H(z) = G(s′) =
a

z−1
zh
+ a

=
zah

z(1+ ah) − 1

The discrete-time pole is located in z = 1
1+ah . The system is stable and the

pole is on the positive real axis for all values of h.

c. We use s′ = 2
h
z−1
z+1 and obtain

H(z) = G(s′) =
a

2
h
z−1
z+1 + a

=
ah(z+ 1)

2(z− 1) + ah(z+ 1)
=

ah(z+ 1)

(2+ ah)z+ (ah− 2)

The discrete-time pole is located in z = 2−ah
2+ah . The system is stable for all

values of h, since

∣

∣

2−ah
2+ah

∣

∣ < 1 \ −2 < 2 < 2+ 2ah

which holds for all positive values of a and h.

The pole ends up on the positive real axis for h < 2
a
.

d. We use s′ =
a

tan(ah/2)

z− 1

z+ 1
=
a

γ

z− 1

z+ 1
and obtain

H(z) = G(s′) =
✚a

✚a

γ

z− 1

z+ 1
+✚a

=
1

1

γ

z− 1

z+ 1
+ 1

=

=
γ (z+ 1)

(z− 1) + γ (z+ 1)
=

γ (z+ 1)

(1+ γ )z+ γ − 1
.
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The discrete-time pole is thus located in

z̄ =
1− γ

1+ γ
=
1− tan(ah/2)

1+ tan(ah/2)
=
1+ 1− (1+ tan(ah/2))

1+ tan(ah/2)
=

2

tan (ah/2) + 1
− 1

which is a real number ∀a ∈ R,h > 0. If we analyze the first term, it is
easy to see that it goes from −∞ to ∞ by changing a and/or h within their
domains. If we limit the analysis for a while in the range 0 < ah < 3π /2
(since it is the domain of z̄), we can see that z̄ is monotonically decreasing

dz̄

d ah
= −

sec2
(

ah
2

)

(

tan
(

ah
2

)

+ 1
)2
< 0

In addition, we know that for ah = 0 then z̄ = 1, and for ah = π /2 then
z̄ = −∞. The limit value for ah is then the one that gives z̄ = −1, i.e., when
ah = π .

In other words, we can say that the discrete-time system is asymptotically

stable whenever 0 < ah < π . Since the value z̄ is a periodic function it is

easy to extend the result as 2kπ < ah < (2k+ 1)π , with k ∈ N (recall that
a > 0 and h > 0).

Figure 4.2 illustrates the plot of z̄ as a function of ah.
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Figure 4.2 Plot of z̄ as a function of ah.

Given the analysis above, it is easy to say that the eigenvalue ends up on

the positive real axis when 2kπ < ah < 2kπ + π /2 with k ∈ N.

6.1 Consider the task set below.

Task name Ti Di Ci

A 10 2 1

B 5 4 2

C 20 10 4
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a. Assign priorities to the tasks according to the rate-monotonic principle.

Draw the schedule assuming worst-case conditions, i.e., the tasks are re-

leased simultaneously and the actual execution times are equal to the worst-

case execution times. Do the tasks meet their deadlines?

b. Assign priorities to the tasks according to the deadline-monotonic principle.

Draw the schedule assuming worst-case conditions. Do the tasks meet their

deadlines?

Solution

a. The tasks are given the following priorities:

Task name Ti Priority

A 10 Medium

B 5 High

C 20 Low

The schedule is shown in Figure 6.3. The worst-case response times of the

tasks are RA = 3, RB = 2, RC = 9, i.e., task A will not meet its deadlines.

A

C

B
Arrival

Completion

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Figure 6.3 Schedule with rate-monotonic priority assignments.

b. The tasks are given the following priorities:

Task name Di Priority

A 2 High

B 4 Medium

C 10 Low

The schedule is shown in Figure 6.4. The worst-case response times of the

tasks are RA = 1, RB = 3, RC = 9, i.e. all tasks will meet their deadlines.
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Figure 6.4 Schedule with deadline-monotonic priority assignments.
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