
Lecture 5: Interrupts & Time

[RTCS Ch. 5]

• interrupts

• clock interrupts

• time primitives

• periodic processes
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External Communication

A real-time system must communicate with the environment:

• A/D and D/A converters

• serial and parallel ports

• keyboard and mouse

• bus interfaces

• timers

The communication can be based on

• polling

• interrupts
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Interrupts

Interrupts are generated on the CPU hardware level, asyn-

chronously transfering the execution to an interrupt handler.
Process

Interrupt no. 2

Interrupt
    no.

Handler
address

1

2

...

Interrupt handler 

Save status

Restore status

Save and restore 
program counter

Interrupt table

The interrupt number is known as the interrupt request (IRQ)
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The program counter is always saved and restored.

The interrupt handler is to save away and restore the registers

it uses.

The context can be saved

• on the stack of the interrupted process

• on a special stack common to all interrupts

• in a specialized set of registers (DSPs, PowerPC, ...)

A context switch may be initiated from the interrupt handler.

In this case the program counter will be restored to a different

value.
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Interrupt Priorities
Process

Interrupt level
       no. 2

Interrupt handler
      Level 3 

Interrupt handler
      Level 2 

Interrupt handler
      Level 1 

Interrupt level
       no. 1

Interrupt level
       no. 3

Disabling the interrupts in the kernel causes all interrupt levels

to be disabled.

"Hardware priorities"
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Only possible to store a limited number of pending interrupts.

Interrupt handlers need to be short and efficient.

Time consuming processing in device processes.

User Process

.

.
Get character;
.
. 

I/O Procedure

.

.
Get buffer;
.
. 

Buffer

Device Process Interrupt handler

LOOP
  Wait(iosem);
  Get char;
  Put buffer;
END; 

.
Signal(iosem);
. 

Problem: two full context switches needed
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Tick-Based vs Event-Based Kernels

Most real-time kernels are tick-based:

• A system clock gives interrupts at regular intervals

• Typical tick intervals are 1 ms, 10 ms

• Defines the time resolution of the kernel

An event-based kernel relies on a high-precision timer to keep

track of time.

• No regular clock interrupts
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Clock Interrupts

Process

Clock interrupt

T
ic

k

Clock Interrupt
       Handler 

Clock Procedure 
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STORK

.

Clock Procedure

PROCEDURE Clock;

VAR P: ProcessRef;

BEGIN

IncTime(Now,Tick); (* Now := Now + Tick *)

LOOP

P := TimeQueue^.succ;

IF CompareTime(P^.head.nextTime,Now) <= 0 THEN

MovePriority(P,ReadyQueue);

ELSE EXIT;

END;

END;

DEC(Running^.timer); (* Round-robin time slicing *)

IF Running^.timer <= 0 THEN

MovePriority(Running,ReadyQueue);

END;

Schedule;

END Clock;
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STORK

.

Clock Procedure

Now is a global variable that keeps track of the current time.

TimeQueue is a time-sorted list containing processes waiting on

time.

Round-robin time-slicing within the same priority levels:

• if a process has executed longer than its time slice and

other processes with the same priority are ready then a

context switch takes place

• used by the Linux real-time scheduling class SCHED_RR

The Linux real-time scheduling class SCHED_FIFO does not

use round-robin within the same priority levels.
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Event-Based Clock Interrupts

Clock interrupts from a variable time source (e.g. high-

resolution timer) instead of a fixed clock.

When a process is inserted in TimeQueue the kernel sets up

the timer to give an interrupt at the wake-up time of the first

process in TimeQueue.

When the clock interrupt occurs, a context switch to the first

process is performed and the timing chip is set up to give

an interrupt at the wake-up time of the new first process in

TimeQueue.
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Interrupts and Java

In the native-thread model each Java thread is mapped onto a
separate native thread � nothing is different

In the green-thread model things become more complicated

• The system level interrupt handling facility has no notion of
Java threads

• when a Java thread performs a blocking operation the JVM
indicates that it wants to be informed by the operating system
when the associated IO interrupt occurs.

• The JVM Linux thread does not block until it has serviced all
Java threads that are Ready.

• When no Java threads are Ready, the JVM thread does a
selective wait (multiplexed IO) on all the IO interrupts that it
needs to be informed about. A timeout is set to the time when
the next sleeping Java thread should execute.
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Interrupt Handling in Linux

Interrupt handler is known as the Interrupt Service Routine (ISR)

The conflicting goal of having ISRs that both execute fast and

perform a lot of work is solved by splitting them in two halves:

• the top half (the actual interrupt handler)

• the bottom half

– executes at later stage (deferred until later)

– executes in a similar way as an ordinary task, but is more
efficient, e.g., has a smaller context

– compare with device processes

– supported in multiple ways

∗ softirq

∗ tasklet

∗ work queue
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Exceptions

Many modern programming languages support software fault
handling using exceptions.

When a fault occurs in a piece of code, an exception is raised (or
thrown).

The run-time system locates the closest handler for the exception
and transfers the execution to it.

Many similarities with interrupts:

• exceptions occur synchronously w.r.t. the processor clock, i.e.
they can be seen as synchronous interrupts generated by the
processor

• interrupts = asynchronous interrupts generated by the hardware
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Procedure A

Procedure B
Procedure CA calls B

B calls C

Exception X
   raised

Handler
for X

B terminates
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Exception Handling in Java

try {

// Perform some method calls that

// might throw exceptions

} catch (Exception e) {

// Control transfered here if there

// is an exception. Handle the fault

} finally {

// These lines are always executed. Clean-up

}
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Wait Time Primitives

Two main types:

• Wait a time interval

– relative to current time

– sleep (Java), delay (Ada), WaitTime (STORK)

• Wait until a specified time

– absolute time

– delayuntil (Ada), WaitUntil (STORK)

– unfortunately not available in Java

WaitUntil primitives more powerful
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Wait Time and Process States

Blocked

Running Ready

waiting event

When WaitTime/WaitUntil is called: process moved from

Running to Blocked (moved from ReadyQueue to TimeQueue)

When time has passed: process moved from Blocked to Ready

(done in the Clock procedure)
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STORK

.

Time Primitives in STORK

PROCEDURE Tick(): CARDINAL;

Returns the tick interval of the current machine in milliseconds. This
makes it possible to write real-time code that is portable between
platforms with different time resolution.

PROCEDURE CurrentTime(VAR t: Time);

Returns the current time (Now).

PROCEDURE IncTime(VAR t: Time, c: CARDINAL);

Increments the value of t with c milliseconds.

PROCEDURE CompareTime(VAR t1,t2: TIME): INTEGER;

Compares two time variables. Returns −1 if t1 < t2. Returns 0 if t1

= t2. Returns 1 if t1 > t2.
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STORK

.

PROCEDURE WaitUntil(t: Time);

Delays the calling process until Now ≥ t. If Now is already larger than
t when WaitUntil is called it is a null operation.

PROCEDURE WaitTime(t: CARDINAL);

Delays the calling process for t milliseconds.
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STORK

.

Implementation

PROCEDURE WaitUntil(t: Time);

BEGIN

Running^.head.nextTime := t;

MoveTime(Running,TimeQueue);

Schedule;

END WaitUntil;

PROCEDURE WaitTime(t: CARDINAL);

VAR next: Time;

BEGIN

CurrentTime(next);

IncTime(next,t);

WaitUntil(next);

END WaitTime;
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Time Primitives in Java

No WaitUntil, only WaitTime (sleep).

Methods:

• sleep(long milliseconds): Puts the currently executing

thread to sleep for (at least) the specified number of

milliseconds. Static method of the Thread class.

• currentTimeMillis(): Returns the current time in millisec-

onds. Static method of the System class.
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The Idle process

What to do when all processes are blocked?

1. The CPU contains no other processes

• Idle process at lowest priority

(* Process *) PROCEDURE Idle;

BEGIN

SetPriority(MaxPriority - 1);

LOOP END;

END Idle;

2. The CPU contains other non-realtime processes

• the whole process waits until the wakeup time of the

first process in TimeQueue
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A complete real-time kernel

Now you have seen all the parts of a real-time kernel:

• how a process/thread/task is represented

• what happens during a context switch

• communication and synchronization mechanisms

• interrupt handling

• sleep

• the idle process
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The tasks queues in a real-time kernel

• ReadyQueue

– one in the single-processor case or when using global

scheduling for multicores

– multiple in the case of partitioned scheduling for

multicores

– sorted in priority order

• TimeQueue

– sorted in earliest wakeup time order

• Waiting queues for semaphores, monitors, locks etc

– sorted in priority order

• Queues containg threads waiting for an event/condition

variable

– normally sorted in priority order
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Reasons for a context switch - 1

The running thread executes an operation that leads to a

context switch

• voluntarily releases the CPU

– sleep, the thread terminates, yield

• performs an operation that may cause it to block

– wait on semaphore, tries to take/lock a monitor, ...

• performs an operation that unblocks another higher priority

thread

– signals a semaphore, returns a lock, ...
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Reasons for a context switch - 2

Due to an interrupt

• Clock interrupt

– a sleeping thread of higher priority than the executing

one is woken up

– the running thread has executed longer than its time

slice and there is another thread with the same priority

that is ready to execute

• Other types of interrupts, e.g., bus, keyboard, mouse, ...

– context switch to a device thread that handles the

interrupt, which eventually may cause a context switch

to a thread waiting for, e.g. IO
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Implementing Periodic Tasks

Periodic tasks are very common in real-time systems.

Implementation options without a real-time kernel:

• Implement each periodic activity in an interrupt handler

associated with a periodic timer.

– Only limited number of timers

– Difficult, error-prone

• Use a static cyclic executive

– Scheduler driven by periodic timer

– Inflexible
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Implementation options using a real-time kernel:

• Real-time kernel with wait time primitives:

– Self-scheduling tasks (infinite loops with wait state-

ments)

• Real-time kernel with explicit support for periodic tasks:

– Allows the programmer to register a function in the

kernel to be executed every T seconds

– Not common
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Periodic Execution

Latency

Service time

Period

Actual start
     time

Actual start
     time

Ideal start
     time

Ideal start
     time

Ideal start
     time

• Latency: Release jitter due to limited time precision (e.g.

tick scheduling) and preemption from higher-priority tasks

• Service time: Actual execution time and preemption from

higher-priority tasks
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Implementing Self-Scheduling Periodic Tasks

Attempt 1:

LOOP

PeriodicActivity;

WaitTime(h);

END;

Does not work.

Period > h and time-varying.

The execution time of PeriodicActivity is not accounted for.
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Implementing Self-Scheduling Periodic Tasks

Attempt 2:

LOOP

CurrentTime(Start);

PeriodicActivity;

CurrentTime(Stop);

C := Stop - Start;

WaitTime(h - C);

END;

Does not work.

An interrupt causing suspension may occur between the

assignment and WaitTime. Need a WaitUntil primitive.

32

Implementing Self-Scheduling Periodic Tasks

Attempt 3:

LOOP

CurrentTime(t);

PeriodicActivity;

IncTime(t,h);

WaitUntil(t);

END;

Does not work.

Preemption by a higher-priority task may delay CurrentTime

from being executed.
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Implementing Self-Scheduling Periodic Tasks

Attempt 4:

CurrentTime(t);

LOOP

PeriodicActivity;

IncTime(t,h);

WaitUntil(t);

END;

Correct.

Will however try to catch up if the actual execution time of

PeriodicActivity occasionally becomes larger than the period.
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Implementing Self-Scheduling Periodic Tasks

Attempt 5: Reset the base time in case of overruns. Accept a

too long sample and try to be on time from now on.

Assume the existence of a new WaitTime primitive

PROCEDURE NewWaitUntil(VAR t: TIME) // VAR = call-by-reference

VAR diff : INTEGER;

BEGIN

disableInterrupts;

diff := CompareTime(t,Now);

IF diff > 0 THEN

Running^.head.nextTime := t;

MoveTime(Running, TimeQueue);

Schedule;

ELSE

CurrentTime(t);

END;

enableInterrupts;

END NewWaitUntil;
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The code now becomes

CurrentTime(t);

LOOP

PeriodicActivity;

IncTime(t,h);

NewWaitUntil(t);

END;
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Self-Scheduling Periodic Tasks in Java

public void run() {

long h = 10; // period (ms)

long duration;

long t = System.currentTimeMillis();

while (true) {

periodicActivity();

t = t + h;

duration = t - System.currentTimeMillis();

if (duration > 0) {

try {

sleep(duration);

} catch (InterruptedException e) {}

}

}

}
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Foreground-Background Scheduler

Foreground tasks (e.g. controllers) execute in interrupt han-

dlers.

The background task runs as the main program loop

A common way to achieve simple concurrency on low-end

implementation platforms that do not support any real-time

kernels.

Will be used in the ATMEL AVR projects in the course as well

as in Lab 3.
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Periodic Execution in the Atmel AVR mega16

Main program:

#include <avr/io.h>

#include <avr/signal.h>

#include <avr/interrupt.h>

int main() {

TCNT2 = 0x00; /* Timer 2: Reset counter (periodic timer) */

TCCR2 = 0x0f; /* Set clock prescaler to 1024 */

OCR2 = 144; /* Set the compare value, corr. to ~100 Hz

when clock runs @14.7 MHz */

/* 14.7 MHz/1024/144 is approx 100 Hz */

outp(BV(OCIE2),TIMSK); /* Start periodic timer */

sei(); /* Enable interrupts */

while (1) {

/* Do some background work */

}

}
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Timer interrupt handler:

/**

* Interrupt handler for the periodic timer.

* Interrupts are generated every 10 ms. The

* control algorithm is executed every 50 ms.

*/

SIGNAL(SIG_OUTPUT_COMPARE2) {

static int8_t ctr = 0; /* static to retain value

between invocations! */

if (++ctr == 5) {

ctr = 0;

/* Run the controller */

}

}
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