
Lecture 5: Interrupts & Time

[RTCS Ch. 5]

• interrupts

• clock interrupts

• time primitives

• periodic processes

1

External Communication

A real-time system must communicate with the environment:

• A/D and D/A converters

• serial and parallel ports

• keyboard and mouse

• bus interfaces

• timers

The communication can be based on

• polling

• interrupts

2

Interrupts

Interrupts are generated on the CPU hardware level, asyn-

chronously transfering the execution to an interrupt handler.
Process

Interrupt no. 2

Interrupt
 no.

Handler
address

1

2

...

Interrupt handler

Save status

Restore status

Save and restore
program counter

Interrupt table

The interrupt number is known as the interrupt request (IRQ)

3

The program counter is always saved and restored.

The interrupt handler is to save away and restore the registers

it uses.

The context can be saved

• on the stack of the interrupted process

• on a special stack common to all interrupts

• in a specialized set of registers (DSPs, PowerPC, ...)

A context switch may be initiated from the interrupt handler.

In this case the program counter will be restored to a different

value.

4

Interrupt Priorities
Process

Interrupt level
 no. 2

Interrupt handler
 Level 3

Interrupt handler
 Level 2

Interrupt handler
 Level 1

Interrupt level
 no. 1

Interrupt level
 no. 3

Disabling the interrupts in the kernel causes all interrupt levels

to be disabled.

"Hardware priorities"
5

Only possible to store a limited number of pending interrupts.

Interrupt handlers need to be short and efficient.

Time consuming processing in device processes.

User Process

.

.
Get character;
.
.

I/O Procedure

.

.
Get buffer;
.
.

Buffer

Device Process Interrupt handler

LOOP
 Wait(iosem);
 Get char;
 Put buffer;
END;

.
Signal(iosem);
.

Problem: two full context switches needed

6

Tick-Based vs Event-Based Kernels

Most real-time kernels are tick-based:

• A system clock gives interrupts at regular intervals

• Typical tick intervals are 1 ms, 10 ms

• Defines the time resolution of the kernel

An event-based kernel relies on a high-precision timer to keep

track of time.

• No regular clock interrupts

7

Clock Interrupts

Process

Clock interrupt

T
ic

k

Clock Interrupt
 Handler

Clock Procedure

8

STORK

.

Clock Procedure

PROCEDURE Clock;

VAR P: ProcessRef;

BEGIN

IncTime(Now,Tick); (* Now := Now + Tick *)

LOOP

P := TimeQueue^.succ;

IF CompareTime(P^.head.nextTime,Now) <= 0 THEN

MovePriority(P,ReadyQueue);

ELSE EXIT;

END;

END;

DEC(Running^.timer); (* Round-robin time slicing *)

IF Running^.timer <= 0 THEN

MovePriority(Running,ReadyQueue);

END;

Schedule;

END Clock;
9

STORK

.

Clock Procedure

Now is a global variable that keeps track of the current time.

TimeQueue is a time-sorted list containing processes waiting on

time.

Round-robin time-slicing within the same priority levels:

• if a process has executed longer than its time slice and

other processes with the same priority are ready then a

context switch takes place

• used by the Linux real-time scheduling class SCHED_RR

The Linux real-time scheduling class SCHED_FIFO does not

use round-robin within the same priority levels.

10

Event-Based Clock Interrupts

Clock interrupts from a variable time source (e.g. high-

resolution timer) instead of a fixed clock.

When a process is inserted in TimeQueue the kernel sets up

the timer to give an interrupt at the wake-up time of the first

process in TimeQueue.

When the clock interrupt occurs, a context switch to the first

process is performed and the timing chip is set up to give

an interrupt at the wake-up time of the new first process in

TimeQueue.

11

.

Interrupts and Java

In the native-thread model each Java thread is mapped onto a
separate native thread � nothing is different

In the green-thread model things become more complicated

• The system level interrupt handling facility has no notion of
Java threads

• when a Java thread performs a blocking operation the JVM
indicates that it wants to be informed by the operating system
when the associated IO interrupt occurs.

• The JVM Linux thread does not block until it has serviced all
Java threads that are Ready.

• When no Java threads are Ready, the JVM thread does a
selective wait (multiplexed IO) on all the IO interrupts that it
needs to be informed about. A timeout is set to the time when
the next sleeping Java thread should execute.

12

Interrupt Handling in Linux

Interrupt handler is known as the Interrupt Service Routine (ISR)

The conflicting goal of having ISRs that both execute fast and

perform a lot of work is solved by splitting them in two halves:

• the top half (the actual interrupt handler)

• the bottom half

– executes at later stage (deferred until later)

– executes in a similar way as an ordinary task, but is more
efficient, e.g., has a smaller context

– compare with device processes

– supported in multiple ways

∗ softirq

∗ tasklet

∗ work queue

13

Exceptions

Many modern programming languages support software fault
handling using exceptions.

When a fault occurs in a piece of code, an exception is raised (or
thrown).

The run-time system locates the closest handler for the exception
and transfers the execution to it.

Many similarities with interrupts:

• exceptions occur synchronously w.r.t. the processor clock, i.e.
they can be seen as synchronous interrupts generated by the
processor

• interrupts = asynchronous interrupts generated by the hardware

14

Procedure A

Procedure B
Procedure CA calls B

B calls C

Exception X
 raised

Handler
for X

B terminates

15

.

Exception Handling in Java

try {

// Perform some method calls that

// might throw exceptions

} catch (Exception e) {

// Control transfered here if there

// is an exception. Handle the fault

} finally {

// These lines are always executed. Clean-up

}

16

Wait Time Primitives

Two main types:

• Wait a time interval

– relative to current time

– sleep (Java), delay (Ada), WaitTime (STORK)

• Wait until a specified time

– absolute time

– delayuntil (Ada), WaitUntil (STORK)

– unfortunately not available in Java

WaitUntil primitives more powerful

17

Wait Time and Process States

Blocked

Running Ready

waiting event

When WaitTime/WaitUntil is called: process moved from

Running to Blocked (moved from ReadyQueue to TimeQueue)

When time has passed: process moved from Blocked to Ready

(done in the Clock procedure)

18

STORK

.

Time Primitives in STORK

PROCEDURE Tick(): CARDINAL;

Returns the tick interval of the current machine in milliseconds. This
makes it possible to write real-time code that is portable between
platforms with different time resolution.

PROCEDURE CurrentTime(VAR t: Time);

Returns the current time (Now).

PROCEDURE IncTime(VAR t: Time, c: CARDINAL);

Increments the value of t with c milliseconds.

PROCEDURE CompareTime(VAR t1,t2: TIME): INTEGER;

Compares two time variables. Returns −1 if t1 < t2. Returns 0 if t1

= t2. Returns 1 if t1 > t2.
19

STORK

.

PROCEDURE WaitUntil(t: Time);

Delays the calling process until Now ≥ t. If Now is already larger than
t when WaitUntil is called it is a null operation.

PROCEDURE WaitTime(t: CARDINAL);

Delays the calling process for t milliseconds.

20

STORK

.

Implementation

PROCEDURE WaitUntil(t: Time);

BEGIN

Running^.head.nextTime := t;

MoveTime(Running,TimeQueue);

Schedule;

END WaitUntil;

PROCEDURE WaitTime(t: CARDINAL);

VAR next: Time;

BEGIN

CurrentTime(next);

IncTime(next,t);

WaitUntil(next);

END WaitTime;
21

.

Time Primitives in Java

No WaitUntil, only WaitTime (sleep).

Methods:

• sleep(long milliseconds): Puts the currently executing

thread to sleep for (at least) the specified number of

milliseconds. Static method of the Thread class.

• currentTimeMillis(): Returns the current time in millisec-

onds. Static method of the System class.

22

The Idle process

What to do when all processes are blocked?

1. The CPU contains no other processes

• Idle process at lowest priority

(* Process *) PROCEDURE Idle;

BEGIN

SetPriority(MaxPriority - 1);

LOOP END;

END Idle;

2. The CPU contains other non-realtime processes

• the whole process waits until the wakeup time of the

first process in TimeQueue
23

A complete real-time kernel

Now you have seen all the parts of a real-time kernel:

• how a process/thread/task is represented

• what happens during a context switch

• communication and synchronization mechanisms

• interrupt handling

• sleep

• the idle process

24

The tasks queues in a real-time kernel

• ReadyQueue

– one in the single-processor case or when using global

scheduling for multicores

– multiple in the case of partitioned scheduling for

multicores

– sorted in priority order

• TimeQueue

– sorted in earliest wakeup time order

• Waiting queues for semaphores, monitors, locks etc

– sorted in priority order

• Queues containg threads waiting for an event/condition

variable

– normally sorted in priority order
25

Reasons for a context switch - 1

The running thread executes an operation that leads to a

context switch

• voluntarily releases the CPU

– sleep, the thread terminates, yield

• performs an operation that may cause it to block

– wait on semaphore, tries to take/lock a monitor, ...

• performs an operation that unblocks another higher priority

thread

– signals a semaphore, returns a lock, ...

26

Reasons for a context switch - 2

Due to an interrupt

• Clock interrupt

– a sleeping thread of higher priority than the executing

one is woken up

– the running thread has executed longer than its time

slice and there is another thread with the same priority

that is ready to execute

• Other types of interrupts, e.g., bus, keyboard, mouse, ...

– context switch to a device thread that handles the

interrupt, which eventually may cause a context switch

to a thread waiting for, e.g. IO

27

Implementing Periodic Tasks

Periodic tasks are very common in real-time systems.

Implementation options without a real-time kernel:

• Implement each periodic activity in an interrupt handler

associated with a periodic timer.

– Only limited number of timers

– Difficult, error-prone

• Use a static cyclic executive

– Scheduler driven by periodic timer

– Inflexible

28

Implementation options using a real-time kernel:

• Real-time kernel with wait time primitives:

– Self-scheduling tasks (infinite loops with wait state-

ments)

• Real-time kernel with explicit support for periodic tasks:

– Allows the programmer to register a function in the

kernel to be executed every T seconds

– Not common

29

Periodic Execution

Latency

Service time

Period

Actual start
 time

Actual start
 time

Ideal start
 time

Ideal start
 time

Ideal start
 time

• Latency: Release jitter due to limited time precision (e.g.

tick scheduling) and preemption from higher-priority tasks

• Service time: Actual execution time and preemption from

higher-priority tasks

30

Implementing Self-Scheduling Periodic Tasks

Attempt 1:

LOOP

PeriodicActivity;

WaitTime(h);

END;

Does not work.

Period > h and time-varying.

The execution time of PeriodicActivity is not accounted for.

31

Implementing Self-Scheduling Periodic Tasks

Attempt 2:

LOOP

CurrentTime(Start);

PeriodicActivity;

CurrentTime(Stop);

C := Stop - Start;

WaitTime(h - C);

END;

Does not work.

An interrupt causing suspension may occur between the

assignment and WaitTime. Need a WaitUntil primitive.

32

Implementing Self-Scheduling Periodic Tasks

Attempt 3:

LOOP

CurrentTime(t);

PeriodicActivity;

IncTime(t,h);

WaitUntil(t);

END;

Does not work.

Preemption by a higher-priority task may delay CurrentTime

from being executed.

33

Implementing Self-Scheduling Periodic Tasks

Attempt 4:

CurrentTime(t);

LOOP

PeriodicActivity;

IncTime(t,h);

WaitUntil(t);

END;

Correct.

Will however try to catch up if the actual execution time of

PeriodicActivity occasionally becomes larger than the period.

34

Implementing Self-Scheduling Periodic Tasks

Attempt 5: Reset the base time in case of overruns. Accept a

too long sample and try to be on time from now on.

Assume the existence of a new WaitTime primitive

PROCEDURE NewWaitUntil(VAR t: TIME) // VAR = call-by-reference

VAR diff : INTEGER;

BEGIN

disableInterrupts;

diff := CompareTime(t,Now);

IF diff > 0 THEN

Running^.head.nextTime := t;

MoveTime(Running, TimeQueue);

Schedule;

ELSE

CurrentTime(t);

END;

enableInterrupts;

END NewWaitUntil;

35

The code now becomes

CurrentTime(t);

LOOP

PeriodicActivity;

IncTime(t,h);

NewWaitUntil(t);

END;

36

.

Self-Scheduling Periodic Tasks in Java

public void run() {

long h = 10; // period (ms)

long duration;

long t = System.currentTimeMillis();

while (true) {

periodicActivity();

t = t + h;

duration = t - System.currentTimeMillis();

if (duration > 0) {

try {

sleep(duration);

} catch (InterruptedException e) {}

}

}

}
37

Foreground-Background Scheduler

Foreground tasks (e.g. controllers) execute in interrupt han-

dlers.

The background task runs as the main program loop

A common way to achieve simple concurrency on low-end

implementation platforms that do not support any real-time

kernels.

Will be used in the ATMEL AVR projects in the course as well

as in Lab 3.

38

Periodic Execution in the Atmel AVR mega16

Main program:

#include <avr/io.h>

#include <avr/signal.h>

#include <avr/interrupt.h>

int main() {

TCNT2 = 0x00; /* Timer 2: Reset counter (periodic timer) */

TCCR2 = 0x0f; /* Set clock prescaler to 1024 */

OCR2 = 144; /* Set the compare value, corr. to ~100 Hz

when clock runs @14.7 MHz */

/* 14.7 MHz/1024/144 is approx 100 Hz */

outp(BV(OCIE2),TIMSK); /* Start periodic timer */

sei(); /* Enable interrupts */

while (1) {

/* Do some background work */

}

}

39

Timer interrupt handler:

/**

* Interrupt handler for the periodic timer.

* Interrupts are generated every 10 ms. The

* control algorithm is executed every 50 ms.

*/

SIGNAL(SIG_OUTPUT_COMPARE2) {

static int8_t ctr = 0; /* static to retain value

between invocations! */

if (++ctr == 5) {

ctr = 0;

/* Run the controller */

}

}

40

