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Goal

Question to be answered:

• How can we guarantee that a set of tasks meet their

deadlines?
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Problem Formulation

Events

• events occur that require computations (interrupts)

• aperiodic (sporadic) events and periodic events

Worst-Case Execution Time

• a task executes a piece of code in response to an event

• an upper bound on the CPU time it takes to execute the
task without any interfering tasks (alone on the CPU)

Deadline

• Maximum allowed time when the task should be com-
pleted

Scheduling

• the choice of which event to process at a given time, i.e.

which task to execute
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Schedulability Analysis

• For hard real-time systems the deadlines must always be

met

• Off-line guarantee test (before the system is started)

required to check so that there are no circumstances that

could lead to missed deadlines

• A system is unschedulable if the scheduler will not find a

way to switch between the tasks such that the deadlines

are met

• The test is sufficient if, when it answers "Yes", all dead-

lines will be met

• The test is necessary if, when it answers "No", there really

is a situation where deadlines could be missed

• The test is exact if it is both sufficient and necessary

• A sufficient test is an absolute requirement and we like it

to be as close to necessary as possible 4
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Execution Time Estimation

Basic Question:

• "How much CPU time does this piece of code need?"

Two major approaches:

1. Measuring execution times

2. Analyzing execution times
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Measuring Execution Times

• the code is compiled and run with measuring devices (e.g.

logical analyzer) connected, or ..

• ..., the OS provide execution time measurements

• a large set of test input data is used

• longest time required = longest time measured (+ safety

margin)

General problem:

• No guarantees that we really have encountered the

longest execution time
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Problems:

• execution times are data dependent (e.g. a sensor read-
ing)

• caching

– memories have different speeds

– a memory reference causing a cache miss takes much

longer time than a reference inside the cache

• pipelining & speculative execution

• memory accesses for multiprocessor systems

• testing a real-time problem is difficult and time consuming

• garbage collection in e.g., Java (may occur at any time)

Main Problem: No guarantees
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best-case
worst-case

latency

longest observed case

used case
probabililty
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Analyzing Execution Times

Aim:

• a tool that takes the source code and automatically and

formally correct decides the longest execution time

• research area for the last 10-15 years

Problems:

• compiler dependent

– different compilers generate different code

– Remedy: work with the machine code
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Approach:

• use the instruction time tables from the CPU manufacturer

• add up the instruction times of the individual statements

Problem:

• branching statements (IF, CASE)

– how should we know which code that is executed
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Execution times of the basic blocks:

Operation Number of CPU cycles

MOVE 8

CMP 4

BGT 4

MUL D0,#3 16 + 2 times # ’1’s

JMP 4

ADD 4

time(B1) = 8+ 4+ 4 = 16 cycles

time(B2) = (16 + 2 ∗ 16) + 8 + 4 = 60 cycles (word length = 16

bits)

time(B3) = 4 cycles

[ time(if-statement) = 76 cycles
8MHz clock frequency [ 1 cycle takes 125ns

[ time(if-statement) = 76 ∗ 125ns= 9.5µs
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Extended to more complex statements

IF X = 0 THEN

IF X > 5 THEN

X := X + 1;

ELSE

X := X * 3;

ENDIF;

ELSE

X := 1;

ENDIF;
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Problems:

• Loops (WHILE, ..)

– How should we know how many times the code will
loop?

WHILE X > 5 DO

X := X - 1;

END;

– Remedy: the programmer must annotate the source

code with the maximum number of times the loop

executes

• Recursion

– difficult to know beforehand how deep the recursive call

can get

– Remedy: recursion not allowed

• allocation of dynamic memory

– the time for the memory management often unknown

– difficult for an analysis tool to handle 14



• goto statements

– the data flow in a piece of code is difficult to work out

• caches and multi-threaded applications

– caches with single-threaded applications can be

handled reasonably well

– caches with multi-threaded applications extremely

pessimistic

∗ each context switch may cause a cache miss

• Main problem: pessimism

– the actual longest execution time may be substantially

smaller than what the analyzer says

– however, if we want formal guarantees the analytical

approach is the only choice
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WCET Analysis Tools

Three phases:

1. Flow Analysis

• calculates all possible execution paths in the program

• in order to limit the number of times the instructions can be
executed

2. Low-level Analysis

• calculates the execution time of the different instructions on
the given hardware

3. WCET Calculation

• Combine step 1 and 2

For the uni-processor case with simple cache structures and without
complex pipelines the obtained results is typically only 10-15 %
larger than the true WCET for single-threaded applications.

However, for multi-threaded applications either on a uniprocessor or

a multicore platform the pessimism is much larger.
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Static Cyclic Scheduling

• off-line approach

• configuration algorithm generates an execution table or

calendar

• many different algorithms (optimization)

• the table repeats cyclically [ static cyclic scheduling

• works for both non-preemptive and preemptive scheduling

• the run-time dispatcher simply follows the table

– sets up an hardware interrupt at the time when a

context switch should be performed (preemptive)

– starts the first task in the calendar

– when the hardware interrupt arrives the first task is

preempted and next task is run,

– ...
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Analysis:

• trivial, run through the table and check that all timing
requirements are met

Limitations:

• can only handle periodic tasks

– aperiodic tasks are made periodic through polling

• the calendar cannot be too large

– shortest repeating cycle = the hyperperiod = the least

common multiple, LCM of the task periods

– periods 5,10,20 ms gives cycle of 20 ms

– periods 7,13,23 ms gives cycle of 2093 ms

– periods are made shorter than they need to be to

reduce the calendar
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Advantages:

• A number of different task constraints can be handled

– Exclusion constraints can be handled

– Precedence constraints can be handled

– Constraint programming can be used to find a schedule

Disadvantages:

• Inflexible

– static design

• building a schedule is NP-Hard

– we cannot expect an algorithm to always find a sched-

ule even if one exists

– good heuristic algorithms exist that can mostly find a

solution if one exists
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Notation

Notation Description

Ci Worst-case execution time of task i

Ti Period of task i

Di Relative deadline of task i

CPU utilization U :

U =
i=n
∑

i=1

Ci

Ti
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Notation

Period

Response time

Relative deadline

τ

Release time Absolute deadline
t
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Example

Task name T D C

A 5 5 2

B 10 10 4

Utilization: 2/5+ 4/10 = 0.8

Schedule length: LCM(5,10) = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B A A B

Worst case response time for task A, RA = 3 < DA
Worst case response time for task B, RB = 6 < DB
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Implementation

CurrentTime(t);

LOOP

A();

B();

A();

IncTime(t,10);

WaitUntil(t);

END;

Problem: Assume it only takes 2 time units to execute task B.

Then task A will start before it should do.
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Better implementation

CurrentTime(t);

LOOP

A();

IncTime(t,2)

WaitUntil(t);

B();

IncTime(t,4);

WaitUntil(t);

A();

IncTime(t,4);

WaitUntil(t);

END;
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Fixed Priority Scheduling

• each task has a fixed priority

• the dispatcher selects the task with the highest priority

• preemptive

• used in most r-t kernels and RTOS
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The Critical Instant

It can be shown that, in the uni-processor case, the worst

situation, from a schedulability perspective, occurs when all

tasks want to start their execution at the same time instant.

This is known as the critical instant.

If we can show that the task set is schedulable in this situation,

it will also be schedulable in other situations.

If we can show that the task set is schedulable for the worst

case execution times, then the task set will also be schedula-

ble if the actual execution times are shorter.

Hence, all uni-processor scheduling analysis only need to

check for this case.
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Rate Monotonic Priority Assignment

• a scheme for assigning priorities to processes

• priorities are set monotonically with rate (period)

• a task with a shorter period is assigned a higher priority

• introduced in

C.L Liu and J.W Layland, Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment, JACM, Vol. 20, Number 1, 1973
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Rate Monotonic Analysis

Assumptions needed = model

Model:

• periodic tasks

• Di = Ti

• tasks are not allowed to be blocked or suspend them-

selves

• priorities are unique

• task execution times bounded by Ci

• task utilization Ui = Ci/Ti

• interrupts and context switches take zero time
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Result:

If the task set has a utilization below a utilization bound then

all deadlines will be met
i=n
∑

i=1

Ci

Ti
≤ n(21/n − 1)

Sufficient condition (if the utilization is larger than the bound

the task set may still be schedulable)

As n→∞, the utilization bound → 0.693(= ln 2)

"If the CPU utilization is less than 69%, then all deadlines are

met"

Alternative tighter test (Hyperbolic Bound):

i=n
∏

i=1

(
Ci

Ti
+ 1) ≤ 2
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Response Time Analysis

Since 1973 the models have become more flexible and the

analysis better

M. Joseph and P. Pandaya, Finding Response Times in a Real-Time System, The

Computer Journal, Vol. 29, No. 5, 1986

Notation:

Notation Description

Ci Worst-case execution time of task i

Ti Period of task i

Di Relative deadline of task i

Ri Worst-case response time of task i

Scheduling test: Ri ≤ Di (necessary and sufficient)

Model:

• Di ≤ Ti
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Ri = Ci +
∑

∀ j∈hp(i)

⌈

Ri

Tj

⌉

Cj

where hp(i) is the set of tasks of higher priority than task i.

The function ⌈x⌉ is the ceiling function that returns the smallest

integer ≥ x.

Recurrence relation, solved by iteration. The smallest solution

is searched for.

Rn+1i = Ci +
∑

∀ j∈hp(i)

⌈

Rni
Tj

⌉

Cj

Start with R0i = 0
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Example

Task set:

Task name T D C Priority

A 52 52 12 low

B 40 40 10 medium

C 30 30 10 high

Original (approximative) analysis:

i=3
∑

i=1

Ci

Ti
= 0.814

3(21/3 − 1) = 0.7798

Using this analysis we cannot tell if the task set is schedulable

or not
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Hyperbolic bound:

i=3
∏

i=1

(
Ci

Ti
+ 1) = 2.0508

Using this analysis we cannot tell if the task set is schedulable

or not
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Exact analysis:

R0C = 0,R
1
C = CC = 10,R

2
C = CC = 10

R0B = 0,R
1
B = CB = 10,

R2B = CB +

⌈

10

TC

⌉

CC = 20,

R3B = . . . = 20

R0A = 0,R
1
A = CA = 12,

R2A = CA +

⌈

12

TB

⌉

CB +

⌈

12

TC

⌉

CC = CA + CB + CC = 32

R3A = . . . = 42,R
4
A = . . . = 52,R

5
A = . . . = 52

Task name T D C Priority R

A 52 52 12 low 52

B 40 40 10 medium 20

C 30 30 10 high 10

Ri ≤ Di [ schedulable

36



Derivation of exact formulae

Task C has highest priority → will not be interrupted and hence
RC = CC = 10 (R1C)

Task B has medium priority. The response time will be at least equal
to CB = 10 (R1B). During that time B will be interrupted once by C.
Hence, the response time will be extended by the execution time of
C, i.e. R2B = 10+ 10 = 20. During this time B will only be interrupted
once by C and that has already been accounted for, i.e. R3B = 20.

Task A has lowest priority. The response will be at least equal to

CA = 12 (R1A). During that time A will be interrupted once by C

and once by B, i.e., R2A = 12 + 10 + 10 = 32. During this time A will

be interrupted twice by C and once by B, i.e., R3A = 32 + 10 = 42.

During this time A will be interrupted twice by C and twice by B, i.e.,

R4A = 42 + 10 = 52. During this time no more unaccounted for

interrupts will occur, i.e., R5A = 52.
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Limitation of the Exact Formula

If the response time is larger than the period then the quantita-

tive value cannot be trusted

• Reason: The analysis does not take interference from

previous jobs of the same task into account

• More advanced analysis exists

However, one still knows that the deadline won’t be met, which

is normally what one is interested in.
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Best-Case Response Time

Under rate-monotonic priority assignment one can also calcu-

late the best-case response time Rbi of a task i.

Rbi = C
min
i +

∑

∀ j∈hp(i)

⌈

Rbi − Tj
Tj

⌉

0

Cminj

where Cmini is the best-case execution time of the task and

⌈x⌉0 = max(0,⌈x⌉).

Can be used to calculate the worst-case input-output latency of

a control task.
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Deadline Monotonic Scheduling

The rate monotonic policy is not very good when D ≤ T .

An infrequent but urgent task would still be given a low priority.

The deadline monotonic ordering policy works better.

A task with a short relative deadline D gets a high priority.

This policy has been proved optimal when D ≤ T (if the

system is unschedulable with the deadline monotonic ordering

then it is unschedulable with all other orderings).

With D ≤ T we can control the jitter in control delay.
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Deadline Monotonic Scheduling - Sufficient

Condition

For a system with n tasks, all tasks will meet their deadlines

if the sum over all tasks of the ratio between the worst-case

execution time of the task and the deadline of the task is below

a certain bound.
i=n
∑

i=1

Ci

Di
≤ n(21/n − 1)
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Deadline Monotonic Scheduling - Exact Analysis

The response time calculations from the rate monotonic theory

is also applicable to deadline monotonic scheduling.

Response time calculation does not make any assumptions on

the priority assignment rule.
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Extension: The Blocking Problem

How should interprocess communication be handled.

The analysis up to now does not allow tasks to share data

under mutual exclusion constraints (e.g. no semaphores or

monitors)

Main problem:

• a task i might want to lock a semaphore,

but the semaphore might be held by a lower priority task

• task i is blocked
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The blocking factor, Bi is the longest time a task i can be

delayed by the execution of lower priority tasks

Ri = Ci + Bi +
∑

∀ j∈hp(i)

⌈

Ri

Tj

⌉

Cj

Priority inversion may cause unbounded blocking time if

ordinary locks are used.

Different locking schemes have different blocking times.

• ordinary priority inheritance

• priority ceiling protocol

• immediate inheritance protocol
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Further Extensions

• Release Jitter

– the difference between the earliest and latest release of

a task relative to the invocation of the task

• Context Switch Overheads

• Clock Interrupt Overheads

• Distributed systems using CAN
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Overrun Behaviour - Fixed Priorities

Overrun = exceeding the worst-case execution time

Will only affect the current task and lower priority tasks

These will miss deadlines or, in the worst case, not get any

execution time at all

Higher priority tasks will be unaffected.
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Earliest Deadline First (EDF) Scheduling

• dynamic approach: all scheduling decisions are made on-

line by the dispatcher

• the task with the smallest absolute deadline runs

• preemptive

• ready-queue sorted in deadline order

• "dynamic priorities"

• more intuitive to assign deadlines to tasks than to assign

priorities

– requires only local knowledge
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Analysis:

• Simplest model:

– periodic tasks

– each task i has a period Ti,

– a worst-case computation time requirement Ci, and

– a relative deadline Di

– Di = Ti
– independent task execution

– ideal kernel
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Result:

If the utilization U of the system is not more than 100% then

all deadlines will be met.

U =
i=n
∑

i=1

Ci

Ti
≤ 1

Necessary and sufficient condition

Advantage: Processor can be fully used.

Less restrictive assumptions make the analysis harder (see

RTCS for the analysis in the case Di ≤ Ti.)
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
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Earliest Deadline First: example

Task name T D C

A 8 8 1
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A
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Earliest Deadline First: example

Task name T D C

A 8 8 1
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Earliest Deadline First: example

Task name T D C
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Earliest Deadline First: example
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Earliest Deadline First: example

Task name T D C
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Earliest Deadline First: example

Task name T D C
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925
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A
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925

t

A

B

C
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925

t

A

B

C
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925
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A

B
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925

t

A

B

C
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Earliest Deadline First: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8+2/5+4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
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Overrun Behaviour

In the case of overrun all tasks will be affected, i.e., all tasks

may miss deadlines.

The “Domino effect”

However, in general EDF is more fair than priority-based

scheduling

• the available resources will be distributed among all the

tasks
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EDF: Summary

Also for EDF there exists a very well-developed schedulability

theory

Resource access protocols similar to priority inheritance and

ceiling.
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Reservation-Based Scheduling

If a tasks overruns (executes longer than anticipated) this will

effect other tasks negatively

• In priority-based systems the priority decides which tasks

that will be effected

• In deadline-based systems all tasks will be effected

We want to provide temporal protection between tasks that

guarantees that a certain task or group of tasks receives a

certain amount of the CPU time.

Cp. Functional protection provided by the memory manage-

ment unit in conventional OS (and in some RTOS)
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Reservation-Based Scheduling: Static & Dynamic

Use static cyclic scheduling for some tasks and let the other

tasks be priority-based (event-based) which only may execute

during the idle periods of the static schedule

Used in Rubus from Arcticus

• Swedish RTOS used by Volvo

• red threads - statically scheduled

• blue threads - dynamically scheduled
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Reservation-based Scheduling: Priority-based

system

How can, conceptually, a reservation-based scheduling system

be implemented on top of ordinary priority-based scheduling

Each task or task set receives a certain percentage of the

CPU. (50% + 30% + 20%)

Can be viewed as if the tasks are executed on a correspond-

ingly much slower CPU

Two variants:

• Each task set gets exactly its share of the CPU

• Each task set gets at least its share of the CPU

Question: Over which time horizon does the CPU reservation

hold
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Reservation-based Scheduling: Priority-based

system 1

Each task set gets exactly its share of the CPU

The scheduler can be viewed as consisting of as many ready-

queues as there are reservation sets.

An external timer is set up to generate interrupts when it is

time to switch which ready-queue that is active

One idle process in each ready-queue
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Reservation-based Scheduling: Priority-based

system 2

Each task set gets at least its share of the CPU

One ready-queue.

Make sure that the tasks belonging to the currently serviced

task set all have higher priority than the tasks in the tasks sets

which are not serviced

An external timer is set up to generate interrupts when it is

time to switch between the tasks sets.

Lower the priorities of the the tasks that have been serviced

and raise the priorities of the tasks that should be serviced

A single idle task
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SCHED_DEADLINE
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SCHED_DEADLINE

In Mainline Linux Kernel since 2 Feb 2014 17:12:22 (Linux

3.14.2).
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Reservation-based Scheduling: Industrial

Practice

Beginning to emerge in commercial RTOS

Integrity from Green Hills Software Inc
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More Information

A nice introduction and overview of the state-of-the-art in uni-

processor scheduling of real-time systems can be found in:

• “Real Time Systems by Fixed Priority Scheduling” by Ken

Tindell and Hans Hansson, Dept. of Computer Systems,

Uppsala University

• http://www.docs.uu.se/ hansh/fpsnotes-9710.ps
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