Lecture 11: Implementation Aspects

[IFAC PB Ch 12, RTCS Ch 11]

. Sampling, aliasing, and choice of sampling interval
. Computational delay

. A-D and D-A quantization

. Computer arithmetic

a A~ W N =

. Controller realizations

Sampling and Aliasing

Recall this example from Lecture 6:
! ‘

Aliasing

Sampling a signal with frequency w creates new signal compo-
nents with frequencies

Dsampled = NW; Tw

where w; = 27 /h is the sampling frequency and n € Z

Nyquist frequency:
N = 0;/2

The fundamental alias for a signal with frequency @ is given by
@fundamental = |(w + (UN) mod (ws) - le

(This frequency lies in the interval 0 < @fndamental < ON)

Antialiasing Filter

Low-pass filter that eliminates all frequencies above the
Nyquist frequency before sampling. Must contain analog
part! Options:
e Analog filter
- E.g. 2-6th order Bessel or Butterworth filter
- Difficult to change sampling interval
e Analog + digital filter
Fixed, fast sampling with fixed analog filter
Downsampling using digital LP-filter
Control algorithm at the lower rate
Easier to change sampling interval

Example: Second-Order Bessel Filter

w2

(s/wp)?+ 2 w(s/wp) + w?’

Gy(s) = 0 =127, ¢ =087

Cl)B:].Z

Bode Diagram

Magnitude (abs)
=

107" 10° 10
Frequency (rad/sec)

Antialiasing Filter and Control Design

As a rule of thumb, the cut-off frequency of the filter should be
chosen so that

|Gr(ioy)| < 0.1,
meaning that frequencies above the Nyquist frequency are
attenuated by at least a factor 10.

Unless extremely fast sampling is used, the filter will affect the
phase margin of the system. Include the filter in the process
description or approximate it by a delay.

o Digital design: E.g. 2nd order Bessel filter: 7 ~ 1.3/ wg. If
|G(iown)| = 0.1 then 7 ~ 1.5k

e Analog design + discretization: must sample fast

Choice of Sampling Interval — Digital Design
Common rule of thumb:

wh ~ 0.1t0 0.6

w is the desired natural frequency of the closed-loop system

Gives about 4 to 20 samples per rise time

©h0.6 oh=01
1 12

Output

o o

5 o
Output

o o

X o

°
0

°

S

T 1

Time,

Choice of Sampling Interval — Analog Design

Sampler + ZOH ~ delay of 0.5k < ¢~*05"

Antialiasing filter ~ delay of 1.5A < 515"

Will affect phase margin (at cross-over frequency o.) by

arge ' = _9p.h

Assume phase margin can be decreased by 5° to 15°
(= 0.087 to 0.262 rad). Then

w.h ~ 0.04 to 0.13

Computational delay

Problem: u(%) cannot be generated instantaneously at time %
when y(k) is sampled. Options:

Case A Case B

Y y(t% Hrs1)

Her)

Atp-1)
—a

Time Time
u u
u(ty, 1) [NS
— utty)

ultr)

Measured Variable
|2

/i

Measured Variable

Computa-
tional

/ lag t=h

tra Time tr-1 tr 2351 Time

u(th 1) C_omputa-
— tional
 lag 7

Control Variable
Control Variable

th tr

Case B: Minimizing the computational delay

Controllers with direct term (D # 0 or D, # 0)

A general linear controller in state-space form (including state
feedback, observer, reference model, etc.):

x.(k + 1) = Fx.(k) + Gy(k) + Geuc(k)
u(k) = Cx.(k) + Dy(k) + Doue(k)

Do as little as possible between the input and the output:

y := adin(1);

uc := adin(2);

/* Calculate Output */

u := ul + D%y + Dc*uc;
daout (u) ;

/* Update State */

xc := F*xc + Gxy + Gec*uc;
ul := C#*xc;

Case A: One sample delay

Controllers without direct term (D = D, = 0)

A general linear controller in state-space form (including state
feedback, observer, reference model, etc.):

x.(k + 1) = Fx.(k) + Gy(k) + Geuc(k)
u(k) = Cx.(k)

Wait with outputting the control signal until the beginning of
next sample

daout (u) ;

y := adin(1);

uc := adin(2);

/* Update State */

xc := Fxxc + Gxy + Gc*uc;
u = Cxxc;

Finite-Wordlength Implementation

Control analysis and design usually assumes infinite-precision
arithmetic, parameters/variables are assumed to be real
numbers

Error sources in a digital implementation with finite wordlength:

e Quantization in A-D converters
e Quantization of parameters (controller coefficients)

e Round-off and overflow in addition, subtraction, multiplica-
tion, division, function evaluation and other operations

e Quantization in D-A converters

The magnitude of the problems depends on
e The wordlength
e The type of arithmetic used (fixed or floating point)
e The controller realization

A-D and D-A Quantization

A-D and D-A converters often have quite poor resolution, e.g.
e A-D: 10-16 bits
o D-A: 8-12 bits

Quantization is a nonlinear phenomenon; can lead to limit

cycles and bias. Analysis approaches (outside scope of this
course):

e Nonlinear analysis
- Describing function approximation
- Theory of relay oscillations
e Linear analysis
- Quantization as a stochastic disturbance

Example: Control of the Double Integrator

Process:
P(s) = 1/s*
Sampling period:
h=1
Controller (PID):

0.7152% — 1.281z + 0.580

CE) =~ -Dero18s)

Simulation with Quantized A-D Converter
(6y = 0.02)

Output

Output
) —
© o
» S
— T
I
I
§

Input
o
g
L
—_
=
—_
=
—_
=
—_

50 100 150
Time

Limit cycle in process output with period 28 s, ampl. 0.01

Simulation with Quantized D-A Converter
(6u = 0.01)

Output

0 50 100 150
0.05

Ungquantized
o

-0.05
0 50 100 150
0.05 T T

Input
o
o
m
L
L
-
-
L
L
=
o
L
L
-
o

-0.05 y -
0 50 100 150
Time

Limit cycle in process input with period 39 s, ampl. 0.01

Pulse-Width Modulation (PWM)

Poor D-A resolution (e.g. 1 bit) can often be handled by fast
switching between levels + low-pass filtering

The new control variable is the duty-cycle of the switched
signal

Output

Floating-Point Arithmetic

Hardware-supported on modern high-end processors (FPUs)

Number representation:
+f x 2%

e f: mantissa, significand, fraction
e 2: base
e e: exponent

The binary point is variable (floating) and depends on the value
of the exponent

Dynamic range and resolution

Fixed number of significant digits

IEEE 754 Binary Floating-Point Standard

Used by almost all FPUs; implemented in software libraries

Single precision (Java/C float):

e 32-bit word divided into 1 sign bit, 8-bit biased exponent,
and 23-bit mantissa (~ 7 decimal digits)

e Range: 27126 — 2128

Double precision (Java/C double):

e 64-bit word divided into 1 sign bit, 11-bit biased exponent,
and 52-bit mantissa (~ 15 decimal digits)

e Range: 271022 _ g102¢

Supports Inf and NaN

What is the output of this C program?

#include <stdio.h>

main() {
float a[] = { 10000.0, 1.0, 10000.0 };
float b[] = { 10000.0, 1.0, -10000.0 };

float sum 0.0;

int i;

for (i=0; i<3; i++)
sum += al[il*b[i];

printf("sum = %f\n", sum);

Remarks:

e The result depends on the order of the operations

o Finite-wordlength operations are neither associative nor
distributive

Arithmetic in Embedded Systems

Small microprocessors used in embedded systems typically do
not have hardware support for floating-point arithmetic
Options:
o Software emulation of floating-point arithmetic
— compiler/library supported
- large code size, slow
o Fixed-point arithmetic
- often manual implementation
- fast and compact

Fixed-Point Arithmetic

Represent all numbers (parameters, variables) using integers

Use binary scaling to make all numbers fit into one of the
integer data types, e.g.

e 8 bits (char, int8_t): [—128, 127]
o 16 bits (short, int16_t): [~32768, 32767]
e 32 bits (long, int32_t): [—2147483648, 2147483647]

Challenges

e Must select data types to get sufficient numerical precision

e Must know (or estimate) the minimum and maximum value
of every variable in order to select appropriate scaling
factors

e Must keep track of the scaling factors in all arithmetic
operations

e Must handle potential arithmetic overflows

Fixed-Point Representation

In fixed-point representation, a real number «x is represented by
an integer X with N = m + n + 1 bits, where

e N is the wordlength
e m is the number of integer bits (excluding the sign bit)
e n is the number of fractional bits

Sign bit

/ 23 22 21 20 2—1 272 2—3

Lofa]afofsfofn]s]

Integer bits Fractional bits

“Q-format”: X is sometimes called a @m.n or @n number »

Conversion to and from fixed point

Conversion from real to fixed-point number:
X :=round(x - 2")
Conversion from fixed-point to real number:

x:=X 27"

Example: Represent x = 13.4 using @4.3 format

X =round(13.4 - 2%) = 107 (= 01101011,)

Lof1[1fof1]of1]1]

Sign bit Integer bits Fractional bits

A Note on Negative Numbers

In almost all CPUs today, negative integers are handled using
two’s complement: A “1” in the sign bit means that 2V should
be subtracted from the stored value

Example (N = 8):

Binary representation Interpretation

00000000 0
00000001 1
01111111 127
10000000 -128

10000001 -127

1111111 -1

Range vs Resolution for Fixed-Point Numbers

A @m.n fixed-point number can represent real numbers in the
range
[_2m, 2m _ 2—n]
while the resolution is
2—n

Fixed range and resolution

e n too small = poor resolution
e n too large = risk of overflow

Example: Choose number of integer and
fractional bits
We want to store x in a signed 8-bit variable.
We know that —28.3 < x < 17.5.

We hence need m = 5 bits to represent the integer part.
(2¢ = 16 < 28.3 < 32 = 29)

n =8—1—m = 2 bits are left for the fractional part.

x should be stored in @5.2 format

Fixed-Point Addition/Subtraction

Two fixed-point numbers in the same @m.n format can be
added or subtracted directly
The result will have the same number of fractional bits

z=x—y & Z=X-Y

e The result will in general require N +1 bits; risk of overflow

Example: Addition with Overflow
Two numbers in @4.3 format are added:
x=1226 = X =098
y=1475 = Y =118

Z=X+Y=216
This number is however out of range and will be interpreted as

216 —256 =—40 = 2z=-50

Fixed-Point Multiplication and Division

If the operands and the result are in the same Q-format,
multiplication and division are done as

z=x-y & Z=(X-Y)/2"
z=xly & Z=(X-2")/Y

e Double wordlength is needed for the intermediate result

o Division by 2" is implemented as a right-shift by n bits

o Multiplication by 2" is implemented as a left-shift by n bits
e The lowest bits in the result are truncated (round-off noise)
o Risk of overflow

Example: Multiplication
Two numbers in @5.2 format are multiplied:
x=625 = X=25
y=475 = Y=19

Intermediate result:
X Y =475

Final result:

Z=475/22=118 = 2z=295

(exact result is 29.6875)

= [ofofofofofofof1]1]1]o]x

Example: Division

Two numbers in @3.4 format are divided:

x=537 = X=86
y=6.0625 = Y =97
Not associative:
Zpea = (X]Y)-2*=(86/97)-2*=0-2*=0
Zgooa = (X -24)/Y =1376/97=14 = z=0.875

(correct first 6 digits are 0.888531)

Multiplication of Operands with Different
Q-format

In general, multiplication of two fixed-point numbers @m;.n;
and @mg.ny gives an intermediate result in the format
Qmi+mgy.ni+ne

which may then be right-shifted n;+ny,—n3 steps and stored in
the format
(2n13.n3

Common case: ns = ng = 0 (one real operand, one integer
operand, and integer result). Then

Z=(X Y)/2m

Implementation of Multiplication in C

Assume Q4.3 operands and result

Implementation of Multiplication in C with
Rounding and Saturation

#include <inttypes.h> /* define int8_t, etc. (Linux only) */ #include <inttypes.h> /* defines int8_t, etc. (Linux only) */
#define n 3 /* number of fractional bits x/ #define n 3 /* number of fractional bits */
int8_t X, Y, Z; /* Q4.3 operands and result */ int8_t X, Y, Z; /* Q4.3 operands and result */
int16_t temp; /* Q9.6 intermediate result */ int16_t temp; /* Q9.6 intermediate result */
temp = (int16_t)X * Y; /% cast operands to 16 bits and multiply */ temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */
temp = temp >> n; /% divide by 2°n */ temp = temp + (1 << n-1); /% add 1/2 to give correct rounding */
Z = temp; /* truncate and assign result */ temp = temp >> n; /* divide by 2°n */
if (temp > INT8_MAX) /* saturate the result before assignment */
Z = INT8_MAX;
else if (temp < INT8_MIN)
Z = INT8_MIN;
else
Z = temp;
39 40
Implementation of Division in C with Rounding Atmel mega8/16 instruction set
#include <inttypes.h> /* define int8_t, etc. (Linux only) */
#define n 3 /* number of fractional bits */ Mnemonic Description # clock cycles
int8_t X, Y, Z; /* Q4.3 operands and result */ ADD Add two registers 1
int16_t temp; /* Q9.6 intermediate result */ :
L SUB Subtract two registers 1
temp = (intl16_t)X << n; /* cast operand to 16 bits and shift */ MULS Multiply signed 2
temp = temp + (Y >> 1); /% Add Y/2 to giYe'c?rrect rounc'ling */ ASR Arithmetic shift right (1 step) 1
temp = temp / Y; /* Perform the division (expensive!) */ . .
Z = temp; /* Truncate and assign result */ LSL Logical shift left (1 step) 1

e No division instruction; implemented in math library using
expensive division algorithm

Laboratory Exercise 3

o Control of a rotating DC servo using the ATmega16

Velocity control (Pl controller)

Position control (state feedback from extended observer)

Floating-point and fixed-point implementations
Measurement of code size and execution time

Example Evaluation: Measurements

Floating-point implementation using floats:
e Velocity control: 950 us
o Position control: 1220 us
o Total code size: 13708 bytes
Fixed-point implementation using 16-bit integers:
e Velocity control: 130 us
e Position control: 270 us
o Total code size: 3748 bytes

The measured times include 115 us A-D conversion. This
gives a 25-50 times actual speedup for fixed point math
compared to floating point. The floating point math library takes
about 10K (out of 16K available!) “

Controller Realizations

A linear controller

bo+ bzl ...+ b,z
l4+a1z71+...+az ™"

H(2) =

can be realized in a number of different ways with equivalent
input-output behavior, e.g.

e Direct form

e Companion (canonical) form

e Series (cascade) or parallel form

Direct Form

The input-output form can be directly implemented as
u(k) => by(k—i)— Y au(k—1i)
i=0 i=1

e Nonminimal (all old inputs and outputs are used as states)
e Very sensitive to roundoff in coefficients
e Avoid!

Companion Forms

E.g. controllable or observable canonical form

—a@; —Q2 -+ —Qp1 —Qp 1
1 0 0 0 o
x(k+1)= 0 1 0 0 x(B)+ | . | y(&)
: 0
0 0 1 0
u(k) = (bl by - bn] x(k)

e Same problem as for the Direct form
e Very sensitive to roundoff in coefficients
o Avoid!

Better: Series and Parallel Forms

Divide the transfer function of the controller into a number of
first- or second-order subsystems:

.| H() |. _.| Hi(2) |_.| H2(2)|_>

Direct Form Series Form

Parallel Form

e Try to balance the gain such that each subsystem has
about the same amplification

Example: Series and Parallel Forms

2% —2.182% + 2.3512% — 1.493z + 0.5776
T 24 —3.223 +3.99722 — 2.3012z + 0.5184

_ <22 —1.635z+ 0.9025) (22 —0.4944z + 0.64)
T\ 22-1.7122+0.81 22 —1.488z 4+ 0.64

—5.396z + 6.302 4 6.466z — 4.907
22 —1.7122+0.81 22 —1.488z+ 0.64

=1+

(Direct)

(Series)

(Parallel)

Direct form with quantized coefficients (N = 8, n = 4):

Bode Diagram

40

g 20
g of
— C(»
—— C(2) direct form N=8
-20 :
0
-45f
§ -9
£ 1350
-1801
—225L " G
10° 10 10

Frequency (rad/sec)

Pole-Zero M: . . . N
1 — Series form with quantized coefficients (N = 8, n = 4):
0.8) 20 Bode Diagram
0.6 20
@ g
0.4 S qof
x x E]
0.2 5 of
2 = — C(2)
S 0 X —10} | — C(z) series form N=8
E
E -20
-0.2 " x 0
-0.4
® -45
-0.6 g -90
-08 @ £ _qasf
1 -180}
-1 -0.5 0 0.5 1
Real Axis -225% 7 5
10° 10 10°
Frequency (rad/sec)
51
e Jackson’s Rules for Series Realizations
;
How to pair and order the poles and zeros?
o}
Jackson’s rules (1970):
0.5 e
« % o Pair the pole closest to the unit circle with its closest zero.
" Repeat until all poles and zeros are taken.
Ed
g 0 e Order the filters in increasing or decreasing order based
% x on the poles closeness to the unit circle.
-05 e This will push down high internal resonance peaks.
(o}

-
-1 -05 0 05 1

Real Axis

Short Sampling Interval Modification
In the state update equation
x(k + 1) = ®x(k) + Ty(k)
the system matrix ® will be close to I if & is small. Round-off
errors in the coefficients of ® can have drastic effects.
Better: use the modified equation
x(k+1) =x(k) + (® — I)x(k) + Ty(k)

e Both @ — I and I" are roughly proportional to &
- Less round-off noise in the calculations
e Also known as the §-form

Short Sampling Interval and Integral Action

Fast sampling and slow integral action can give roundoff
problems:
I(k+1)=1I(k)+e(k) h/T;
N———

~0
Possible solutions:

e Use a dedicated high-resolution variable (e.g. 32 bits) for
the I-part

e Update the I-part at a slower rate

(This is a general problem for filters with very different time
constants)

