Lecture 7: Input-Output Models

[IFAC PB pg 23-35]

o Shift operators; the pulse transfer operator

e Z-transform; the pulse transfer function

e System response

e Poles and zeros

¢ Transformations between system representations

Linear System Models

State-space model Input-output models
X
u y u y
System System
Differential/difference Transfer
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cr | *() =Ax(t) + Bu(t) L a1+ +any G(p) | G(s)
y() = Cx(?) b L b
y(k) +ary(k—1) + -+
k+1) = ®x(k) + Tu(k
or | Ce | anton) =bui-n) | H@) 1)
T = +- + byu(k—n)
More 1-O models: pulse response, step response, frequency function, ... |

Shift Operators

Operators on time series
Assume h =1 (the sampling-time convention)
Time series are doubly infinite sequences:

o f(B):k=...—1,0,1,...

Forward shift operator:
e denoted ¢
e qf(k)=f(k+1)
* ¢"f(k) = f(k+n)

Shift Operators

Backward shift operator:
e denoted ¢!
o g 'f(k)=f(k—1)
° g "f(k)=f(k—n)

Pulse Transfer Operator

Rewrite the state-space model using the forward shift operator:
x(k+1) = qx(k) = Px(k) + Tu(k)
y(k) = Cx(k) + Du(k)
Eliminate x(k):
x(k) = (g — ®)"'Tu(k)

y(k) = Cx(k) + Du(k) = C(q¢I — ®)'T'u(k) + Du(k)
= [C(qI — ®)7'T" + D] u(k) = H(q)u(k)

H (q) is the pulse transfer operator of the system

Describes how the input and output are related.

Poles and Zeros (SISO case)

The pulse transfer function can be written as a rational function

deg A = n = the number of states
degB=n,<n

A(q) is the characteristic polynomial of @, i.e.
A(q) = det(qI — @)

The poles of the system are given by A(q) =0
The zeros of the system are given by B(g) =0




Disk Drive Example

Recall the double integrator from the previous lecture:

dx_()l 0
a = o o) t|1)"

y=[1 0]x

Sample with 2 = 1:

D — oA _ 11
01

4 0.5
F=/ eMBds = [ }
0 1

Disk Drive Example cont.

Pulse transfer operator:

H(q)=C(¢I - ®)"'T'+D
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From Pulse Transfer Operator to Difference
Equation

(¢ +a1q" ™+ - 4 an)y(k) = (bog™ + -+ + bn,)u(k)
which means

y(k+n)+ayk+n—1)+ - +a,y(k)
=bou(k +ny) + --- +bp,u(k)

Difference Equation with Backward Shift
yk+n)+ay(k+n—1)+ - +a,y(k)
=bou(k +np) + -+ + by, u(k)
can be written as

y(k) +ary(k—1) + - +any(k —n)
=bou(k—d)+ -+ +byu(k—d—np)

where d = n — n, is the pole excess of the system.

The reciprocal polynomial
A'(g) =1+aig+ - +a.q" = q"A(g™")

is obtained from the polynomial A by reversing the order of the
coefficients.

Now the system can instead be written as
A(g y(k) = B (¢ u(k —d)

Difference Equation Example

Using forward shift
y(k+2)+2y(k+ 1) + 3y(k) = 2u(k + 1) + u(k)
can be written
(% + 2q + 3)y(k) = (2 + L)u(k)
Hence,

Alg)=q"+2¢+3
B(q)=2q+1




Difference Equation Example, continued

Using backward shift
y(k) + 2y(k — 1) + 3y(k — 2) = 2u(k — 1) + u(k —2)
can be written (d = 1)
(1+2¢7" +3¢7)y(k) = (2+q (k- 1)
Hence,

Af(g ) =1+2¢"+3¢"
B¢ =2+q"

Z-transform

The discrete-time counterpart to the Laplace transform

Defined on semi-infinite time series f(k) : £ =0,1,...

Z{f(R)} =F(2) = ) f(R)""

k=0

z is a complex variable

Example — Discrete-Time Step Signal
Let y(k) = 1 for £ > 0. Then

Y(z)=1+z_1+z_2+~~~=zi1, 2] > 1

Application of the following result for power series

>t~

k=0

1_xf0r|x|<1

Example — Discrete-Time Ramp Signal
Let y(k) =k for £ > 0. Then

-1 —2 -3
Y(2)=0+z"+2z7+32 :m

Application of the following result for power series

kak = (1—367x)2 for |x| < 1
=0

Z-transform Table

Table 2 (pg 26) in IFAC PB (ignore the middle column!)

f Lf zf
(k) (pulse) - 1
1 z
1 k>0 (step) N P
1 hz
kh $2 (z—1)2
1, ., 1 h%2(z+1)
2 (kR) s3 2(z—1)3
o—khIT T z
1+sT z—eh/T
1— e kh/T 1 2(1—eh/T)
s(1+sT) (z=1)(z—ehIT)
sin okh w zsin wh

s + ? 22 — 2zcoswh + 1 g

Some Properties of the Z-transform
Z(af + Bg) = aF(2) + BG(2)
Z(¢"f) =2"F(2)

Z(gf) = 2(F(2) — £(0))




From State Space to Pulse Transfer Function

x(k+1) = dx(k) + Tu(k)
{ y(k) = Cx(k) + Du(k)

{Z(X(Z) —x(0)) =X (2) +TU(2)
Y(2) = CX(2) + DU(2)

Y(2) = C(zI — @) '2x(0) + [C(z] — @) 'T' + D]U(2)

The rational function H(z) = C(zI — ®)~I" + D is called the
pulse transfer function from u to y.

It is the Z-transform of the pulse response.

H(q) vs H(z)

The pulse transfer operator H(q) and the pulse transfer
function H (z) are the same rational functions

They have the same poles and zeros

H(q) is used in the time domain (g = shift operator)

H (2) is used in the Z-domain (z = complex variable)

Calculating System Response Using the
Z-transform

1. Find the pulse transfer function H(z) = C(zI — ®)™'I' + D
2. Compute the Z-transform of the input: U(z) = Z{u(k)}
3. Compute the Z-transform of the output:

Y(2) = C(zl — ®)12x(0) + H(2)U(2)

4. Apply the inverse Z-transform (table) to find the output:
y(k) = Z27{Y(2)}

Frequency Response in Continuous Time
y

Given a stable system G(s), the input u(¢) = sin w¢ will, after a
transient, give the output

¥(t) = |G (iw)| sin (a)t +arg G(ia)))

e The amplitude and phase shift for different frequencies are
given by the value of G(s) along the imaginary axes, i.e.
G(iw)

¢ Plotted in Bode and Nyquist diagrams.

Frequency Response in Discrete Time
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Given a stable system H(z), the input u(k) = sin(wk) will,
after a transient, give the output

y(k) = |H ()] sin(wk + argH(ei”’))
e G(s) and the imaginary axis are replaced by H(z) and the
unit circle.
e Only describes what happens at the sampling instants
e The inter-sample behavior is not studied in this course

Bode diagram for continuous transfer function 1/(s%+1.4s+1) (solid)
and for ZOH-sampled counterpart (dashed, plotted for wh € [0, 7])
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For slow signals, the hold circuit is approximately a ~/2 delay.
For fast signals, the hold circuit destroys the sinusoidal shape.
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Nyquist diagram for cont. transfer function 1/(s? + 1.4s + 1) (solid)
and for ZOH-sampled counterpart (dashed, plotted for wh € [0, 7])

NyquistDiagram
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Interpretation of Poles and Zeros
Poles:

o A pole z = a is associated with the time function (k) = a*

Zeros:

e A zero z = a implies that the transmission of the input
u(k) = a* is blocked by the system

o Related to how inputs and outputs are coupled to the

states
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Transformation of Poles via Sampling: z; = e’
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New Evidence of the Alias Problem

Several points in the s-plane are mapped into the same point
in the z-plane. The map is not bijective
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Sampling of a Second Order System

2
:#
$2 + 20 wos + @3’

G(s) (R

e Larger my = faster system response

e Smaller ¢ = larger damping (relative damping { = cos @).
(Common design choice: { = cos45° ~ 0.7)

Sampling of a Second Order System

The poles of the sampled system are given by
Z2+az+ay=0

where
a; = —2e 42" cos (\/ 1-¢2 a)oh)

as = e—2§a)oh

Imaginary axis

Real axis
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Transformation of Zeros via Sampling Calculation of H(z) Given G(s)
o More complicated than for poles Three approaches:
o Extra zeros may appear in the sampled system 1. Make state-space realization of G(s). Sample to get ® and
e There can be zeros outside the unit circle (non-minimum I. Then H(z) = C(zI — ®)™'T" + D.
phase) even if the continuous system has all the zeros in 2. Directly using the formula
the left half plane o VG
11 o
o For short sampling periods Heon(2) = ZT i | ziesh ES) ds
y—ico
z ~ et

1 eh — 1
_S=ZS S Res {73 G(s)}

e s; are the poles of G(s) and Res denotes the residue.
e outside the scope of the course

3. Use Table 3 (pg 28) in IFAC PB Calculation of H(z) Given G(s)

6) Hy = F T A0 by Example: For G(s) = e~ /s, the previous lecture gave

2"+ a2+ ta,

x(kh + h) = ®x(kh) + T'yu(kh — h) + Tou(kh)

1 h P

s z—1 11 T(h_z) (h—1)?
o= [ ] I'i= 2 Iy= 2

1 h*(z+1) 0 1 T h—1

52 2(z— 1)

- With 2 =1 and 7 = 0.5, this gives

0.125(22 + 62 + 1)

a 1— exp(—ah) H(Z) = C(ZI - <I>)‘1(1"0 + Flz_l) =
s+a z —exp(—ah) z2(22 —2z+1)
1 1 Order: 3
by = h—1+4e by = 1— e _ ghe—ah
e 1= @) 2= g (me T make™ Poles: 0, 1, and 1
S a
ay=—(1+e") az = e Zeros: —3+ /8
2 b1 =1—e(1+ah) by = (e + ah — 1)
(s +a)? ay = —2¢h ag = e~20h
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Examples in Matlab

Phi = [0.5 -0.2; 0 0];

Gamma = [2; 1];

Cc=[10];

D = 0;

h=1;

H = ss(Phi, Gamma, C, D, h);
zpk (H)

% From cont-time transfer function to discrete-time
% pulse transfer function

s = zpk(’s’);

G = 1/s8"3;

H = ¢2d(G,h)

% Another way

G = t£([1],[1 3 2 0]);

G = ss(G);

H = c2d(G,h);

tf (H)




