
Lecture 10: Reference Generation

[IFAC PB Ch 7, Ch 9 p. 68–72, these slides]

1. Transfer function approach

2. State-space approach

3. Nonlinear reference generation

1

Simplistic Reference Handling: Error Feedback

uc
Σ C(z) P(z)

−1

ye

Problems:

• Step setpoint changes can introduce very large control
signals

• The same controller C(z) must be tuned to handle both
disturbances and setpoint changes

– No separation between the regulator problem and the
servo problem

2

Quick Fixes

• Filter the reference signal

F(z)
uc ũc

• Rate-limit the reference signal

uc ũc

• Avoid differentiating the reference signal

– E.g. PID with derivative weighting γ = 0

3

A More General Solution

Use a two-degree-of-freedom (2-DOF) controller, e.g.:

uc

P

−1

ΣHfb

Hff

y

Design procedure:

1. Design feedback controller Hfb to get good regulation proper-
ties (attenuation of load disturbances and measurement noise)

2. Design feedforward compensator Hff to obtain the desired
servo performance

4

PID Example

u = K (β ysp − y+
1

TI

∫
(ysp − y)dτ + TD

d

dt
(γ ysp − y)) =

K (e+
1

TI

∫
edτ + TD

de

dt
)+

K (β − 1)︸ ︷︷ ︸
K1

ysp +TDK (γ − 1)︸ ︷︷ ︸
K2

dysp

dt

GPPID+ +
yysp

K1 + K2 d /dtysp ysp

−

Feedforward + Feedback

5

Equivalent Structures

A 2-DOF controller can be represented in many ways, e.g.:

6

Feedforward Design Using A Reference Model –
Transfer Function Approach

uc
P

Hff

Hm C
y

−1

ym

uff

Σ Σ

• Hm – model that describes the desired servo performance

• Hff – feedforward generator that makes y follow ym

7

The transfer function from uc to y is

Hyuc =
P(Hff + CHm)

1+ PC

Choose Hff =
Hm

P
. Then

Hyuc =
P(Hm

P
+ CHm)

1+ PC
= Hm

Perfect model following!

8

Restrictions on the Model

In order for Hff =
Hm

P
to be causal and stable,

• Hm must have at least the same pole excess as P

• any unstable zeros of P must also be included in Hm

In practice, also poorly damped zeros of P (e.g. outside the
heart-shaped region below) should be included in Hm

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1

0.8
0.6
0.4
0.2

0ζ =

9

Example: PID Control of the Double Tank

Process:

G(s) =
3

(1+ 60s)2

Sampled process (h = 3):

H(z) =
0.003627(z+ 0.9672)

(z− 0.9512)2

PID controller:

C(s) = K

(
1+

1

sTi
+

sTd

1+ sTd/N

)
with K = 7, Ti = 45, Td = 15, N = 10, discretized using
first-order hold.

10

Simulation with error feedback:

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

O
ut

pu
t

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

40

In
pu

t

Time

• Very large control signal at time 0

• Overshoot in the reference step response

11

Reference model:

Gm(s) =
1

(1+ 10s)2

Sampled reference model:

Hm(z) =
0.036936(z+ 0.8187)

(z− 0.7408)2

Feedforward filter:

Hff(z) =
Hm(z)

H(z)
=
10.1828(z+ 0.8187)(z− 0.9512)2

(z− 0.7408)2(z+ 0.9672)

12

Simulation with reference model and feedforward:

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

O
ut

pu
t

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

In
pu

t

Time

• Perfect step response according to the model

• Unpleasant ringing in the control signal

– due to cancellation of poorly damped process zero
13

Modified reference model that includes the process zero:

Hm(z) =
0.034147(z+ 0.9672)

(z− 0.7408)2

New feedforward filer:

Hff(z) =
Hm(z)

H(z)
=
9.414(z− 0.9512)2

(z− 0.7408)2

14

Simulation with modified reference model:

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

O
ut

pu
t

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

In
pu

t

Time

• Ringing eliminated

15

Remark

In the implementation, both uff and ym can be generated by a
single dynamical system:

uc

uff

ym

Model and
feedforward
generator

Matlab:

>> H = ... % define process

>> Hm = ... % define reference model

>> refgen = [Hm/H; Hm] % concatenate systems

>> minreal(ss(refgen)) % make minimal state-space realization

16

Simplistic Reference Handling in State Space

Replace u(k) = −Lx(k) with

u(k) = Lcuc(k) − Lx(k)

The pulse transfer function from uc(k) to y(k) is

H(z) = C(zI − Φ + ΓL)−1ΓLc = Lc
B(z)

Am(z)

In order to have unit static gain (H(1) = 1), Lc should be
chosen as

Lc =
1

C(I − Φ + ΓL)−1Γ

17

Feedforward Design Using a Reference Model –
State Space Approach

∑ ∑
x m

uff

ˆ x
Observer

L Process

−

ufb y

 uc Model and
Feedforward
 Generator

The model should generate a reference trajectory xm for the
process state x (one reference signal per state variable)

The feedforward signal uff should make x follow xm

18

Reference model:

xm(k+ 1) = Φmxm(k) + Γmuc(k)

ym(k) = Cmxm(k)

Control law:

u(k) = L
(
xm(k) − x̂(k)

)
+ uff (k)

• How to generate model states xm that are compatible with
the real states x?

• How to generate the feedforward control uff?

19

Design of the Reference Model

Start by choosing the model identical to the process, i.e.,

xm(k+ 1) = Φxm(k) + Γuff (k)

ym(k) = Cxm(k)

Then modify the dynamics of the model as desired using state
feedback (“within the model”)

uff (k) = Lcmuc(k) − Lmxm(k)

Gives the model dynamics

xm(k+ 1) = (Φ − ΓLm)xm(k) + ΓLcmuc(k)

ym(k) = Cxm(k)

20

uc

uff

xm

Lcm Model

−Lm

Σ

Model and Feedforward Generator

21

Design of the Reference Model

Design choices:

• Lm is chosen to give the model the desired eigenvalues

• Lcm is chosen to give the model the desired static gain

(The above model will have the same zeros as the plant.
Additional zeros and poles can be added by extending the
model, see IFAC PB.)

22

Complete State-Space Controller

The complete controller is given by

x̂(k+ 1) = Φ x̂(k) + Γu(k) + K (y(k) − Cx̂(k)) (Observer)

xm(k+ 1) = Φxm(k) + Γuff (k) (Reference model)

u(k) = L(xm(k) − x̂(k)) + uff (k) (Control signal)

uff (k) = −Lmxm(k) + Lcmuc(k) (Feedforward)

23

Design Example: Depth Control of Torpedoes

θ
δ

y

State vector:

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
q

θ

y

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

pitch angular velocity

pitch angle

depth

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Input signal:

u = δ = rudder angle

24

Torpedo: Continuous-Time Model

Simple model:
dq

dt
= aq+ bδ

dθ

dt
= q

dy

dt
= −Vθ (+ cδ)

where a = −2, b = −1.3, and V = 5 (speed of torpedo)

ẋ =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
a 0 0

1 0 0

0 −V 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭ x +
⎧⎪⎪⎪⎪⎪⎪⎪⎩
b

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎭u
y=

⎧⎩ 0 0 1

⎫⎭ x
25

Torpedo: Sampled Model

Sample with h = 0.2

x(kh+ h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
0.67 0 0

0.165 1 0

−0.088 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ x(kh) +
⎧⎪⎪⎪⎪⎪⎪⎪⎩
0.214

−0.023

0.008

⎫⎪⎪⎪⎪⎪⎪⎪⎭u(kh)

26

Torpedo: State Feedback

• u(k) = −Lx(k)

• load disturbance rejection

Desired continuous-time dynamic behaviour:

• two complex-conjugated poles with relative damping 0.5
and natural frequency ω c

• one pole in −ω c

• a single parameter decides the dynamics

Desired characteristic polynomial

(s2 + 2 ⋅ 0.5 ⋅ ω cs+ω 2c)(s+ω c) = s
3 + 2ω cs

2 + 2ω 2c s+ω 3c

27

Corresponds in discrete time to

(z2 + a1z+ a2) (z− e
−ω ch)

where a1 = −2e−ζ ω ch cos
(√
1− ζ 2ω ch

)
, a2 = e−2ζ ω ch with

ζ = 0.5

28

Torpedo: State Feedback in Matlab

Matlab code

>> h = 0.2;

>> wc = 1; % speed of state feedback

>> pc = wc*roots([1 2 2 1]); % control poles in cont time

>> pcd = exp(pc*h); % control poles in disc time

>> L = place(Phi, Gam, pcd)

L =

-0.1452 -1.6047 0.1528

29

Torpedo: Observer Design

• x̂(k+ 1) = Φ x̂(k) + Γu(k) + K (y(k) − Cx̂(k))

• measurement noise rejection + state estimation

Observer Dynamics:

• the same pole layout as in the control design

• parametrized by ω o instead of ω c

• typically faster dynamics than the controller, e.g., ω o = 2ω c

Desired continuous-time characteristic polynomial:

(s+ω o)(s
2 +ω os+ω 2o) = s

3 + 2ω os
2 + 2ω 2os+ω 3o

Discrete time characteristic polynomial given from previous
slide

30

Torpedo: Observer Design in Matlab

>> wo = 2; % speed of observer

>> po = wo*roots([1 2 2 1]); % observer poles in cont time

>> pod = exp(po*h); % observer poles in disc time

>> K = place(Phi’,C’,pod)’

K =

0

-0.130

0.460

31

Torpedo: Simplistic Approach

Simulation assuming naive approach (u(k) = −Lx̂(k)+Lcuc(k))

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

O
ut

pu
t

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

In
pu

t

Time

• Slow reference step response with overshoot

32

Torpedo: Model and Feedforward Design

xm(k+ 1) = Φxm(k) + Γuff (k)

ym(k) = Cxm(k)

Feedforward:

uff = −Lmxm + lrr

Desired characteristic polynomial:

(s+ωm)
3 = s3 + 3ωms

2 + 3ω 2ms+ω 3m

(critically damped – important!)

• Parametrized using ωm

• Chosen as ωm = 2ω c
33

Torpedo: Model and Feedforward Design in
Matlab

Corresponding discrete time characteristic polynomial from
Matlab

>> h = 0.2;

>> wm = 2; % speed of model

>> pm = wm*roots([1 3 3 1]); % model poles in cont time

>> pmd = exp(pm*h); % model poles in disc time

>> Lm = place(Phi,Gam,pmd)

Lm =

1.518 -5.539 1.001

>> Hm = ss(Phi-Gam*Lm,Gam,C,0,h);

>> lcm = 1/dcgain(Hm)

lcm =

1.001
34

Torpedo: Simulation Complete Controller

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

O
ut

pu
t

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

In
pu

t

Time

• Faster reference step response, no overshoot

35

Model states and feedforward signal:

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

Time

xm1

xm2

xm3

uff

• The model states and the feedforward signal are not affected
by the load disturbance

• Open loop
36

Simulation without the feedforward signal
(
u(k) = L(xm(k) −

x̂(k))
)
:

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

O
ut

pu
t

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

In
pu

t

Time

• Does not work very well – the feedforward term is needed to
get the desired reference step response

37

Simulation without the feedback term
(
u(k) = uff(k)

)
:

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

O
ut

pu
t

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

In
pu

t

Time

• Does not work – the feedback is needed to handle the load
disturbance

38

Nonlinear Reference Generation

Recall the state-space approach to reference generation:

∑ ∑
x m

uff

ˆ x
Observer

L Process

−

ufb y

 uc Model and
Feedforward
 Generator

Often, uff and xm do not come from linear filters but are the result
of solving an optimization problem, e.g.:

• Move a satellite to a given altitude with minimum fuel

• Position a mechanical servo in as short time as possible under
a torque constraint

• Move the ball on the beam as fast as possible without losing it
39

General Solution

• Derive the feedforward (open-loop) control signal uff that
solves the optimization problem

– Course in Nonlinear Control (FRTN05, Lp Vt 2)

• The model state trajectories are generated by solving

dxm

dt
= Axm + Buff

40

Example: Time-Optimal Control of Ball and Beam

State vector: ⎧⎪⎪⎪⎪⎪⎪⎪⎩
x

v

φ

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

ball position

ball velocity

beam angle

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Continuous-time state-space model:

dx
dt
= v

dv
dt
= −kvφ (kv � 10)

dφ
dt
= kφu (kφ � 4.5)

41

Optimization problem: Assume steady state. Move the ball
from start position x(0) = x0 to final position x(t f) = x f in
minimum time while respecting −umax ≤ u(t) ≤ umax.

Optimal control theory gives the optimal open-loop control law

uff (t) =

⎧⎪⎪⎨
⎪⎪⎩
−u0, 0 ≤ t < T

−u0, T ≤ t < 3T

−u0, 3T ≤ t < 4T

where

u0 = sgn(x f−x0)umax

T = 3

√
�x f−x0�

2kφ kvumax

t f = 4T

42

Example: umax = 1, x0 = 0, and x f = 5 � t f = 1.538

Optimal control signal:

0 0.5 1 1.5
−2

−1

0

1

2

u
ff

t

(“bang-bang” control)

43

Solving dφm
dt
= kφuff

gives

φm(t) =

⎧⎪⎪⎨
⎪⎪⎩
−kφu0 t, 0 ≤ t < T

−kφu0 (t−2T), T ≤ t < 3T

−kφu0 (t−4T), 3T ≤ t ≤ 4T

0 0.5 1 1.5
−2

−1

0

1

2

φ
m

t
44

Solving dvm
dt
= −kvφm

gives

vm(t) =

⎧⎪⎪⎨
⎪⎪⎩
−kφ kvu0 t

2/2, 0 ≤ t < T

−kφ kvu0 (t
2/2−2Tt+T2), T ≤ t < 3T

−kφ kvu0 (t
2/2−4Tt+8T2), 3T ≤ t ≤ 4T

0 0.5 1 1.5

0

1

2

3

4

5

6

7

v
m

t
45

Solving dxm
dt
= vm

gives

xm(t) =

⎧⎪⎪⎨
⎪⎪⎩
x0 + kφ kvu0 t

3/6, 0 ≤ t < T

x0 − kφ kvu0 (t
3/6−Tt2+T2t−T3/3), T ≤ t < 3T

x0 + kφ kvu0 (t
3/6−2Tt2+8T2t−26T3/3), 3T ≤ t ≤ 4T

0 0.5 1 1.5

0

1

2

3

4

5

x
m

t
46

Control Design: Summary

• Regulator problem – reduce impact of load disturbances
and measurement noise

– Transfer function approach: design of feedback con-
troller Hfb(z), e.g. PID controller

– State space approach: design of state feedback and
observer

• Servo problem - make the output follow the setpoint in the
desired way

– Transfer function approach: design of model reference
Hm(z) and feedforward filter Hff(z)

– State space approach: design of combined reference
and feedforward generator

∗ Linear or nonlinear reference generation
47

