
.

Lecture X: Overview of Java

[6.4 + Java pointers on the home page]

• Language Overview

• GUIs with Swing

1

.

Aim of the lecture

• Present the basic ideas and concepts behind Java.

• Show how a simple user interface can be implemented.

Java 1.4.2 during the lecture
2

.

Sources of additional information:

• Sun’s Interactive Java Tutorial (local mirror accessible via
the course material list on the course homepage)

• Java Programming Language Basics Part1 and Part2.
http://developer.java.sun.com/developer/onlineTraining/

Programming/BasicJava1/index.html

• Per Holm: Objektorienterad programmering och Java.
Studentlitteratur, 1998.

• Arnold & Gosling: The Java Programming Language. (2nd
ed.), Addison-Wesley, 1998

• Java links on the course home page

• Java material on the home page of the course in Real-
Time Programming.

3

.

Overview

• Developed at Sun Microsystems (Gosling et al)

• Syntax from C, C++, semantics from Simula

• General object-oriented language

• First release May 1995. Latest release Java 2 Version
1.6.0.

• Originally intended for consumer electronics

• Re-marketed as a WWW-language

• Programs compiled into byte code

– interpreted by virtual machine (JVM)
– compiled into native code
– sent over Internet
– platform independent

4

.

5

.

Applications vs Applets

Java applications:

• stand-alone programs

Java applets:

• runs within Java-enabled browsers (clients)

Java servlets:

• runs within network servers
6

.

The Java Language

Aim: A simple, object-oriented, network-oriented, robust,
secure, architecture neutral, portable, high-performance, multi-
threaded, dynamic language.

Simple:

• easy to learn

• based on today’s practice → borrow C++ syntax

• difficult issues omitted, e.g., operator overloading, multiple
inheritance, ..

• automatic garbage collection

• small size
7

.

Object-oriented:

• the object-oriented features of Simula and C++ with some
extensions

Network-oriented:

• full support for networked applications

• TCP/IP protocols (HTTP, FTP)

• open and access objects across the net

8

.

Robust:

• strongly typed language

• extensive compile-time checking

• safe references instead of unsafe pointers

Secure:

• the byte code verifier verifies the byte code before it is
interpreted

• the class loader is responsible for loading compiled Java
classes into the JVM in a safe way

• the security manager handles platform-level security by
checking whether or not a program may access platform
resources (file system, network, ...)

9

.

Comments

// A Line comments. Extends to the end of line

/* A multi-line comment

that continues on multiple lines */

/** Documentation comment. Only immediately

before a class or method declaration. Used

by the java-doc tool */

Multi-line comments may not be nested.
10

.

Simple Declarations

The usual set of simple types

int m, n; // Integer variables

double x, y; // Real variables

double z = 0.89; // Initialization

boolean b;

char ch;

Numeric Expressions

n = 3 * (5 + 1);

x = y / 1.4;

n = m % 8; // Modulo 8

b = true;

ch = ‘x‘;

= for assignment, == for comparison
11

.

Type Casting

Explicit type conversion (casting)

double radians;

int degrees;

...

degrees = radians * 180 / 3.14; // Error

degrees = (int) (radians * 180 / 3.14) // OK

12

.

Java Statements

Similar to other languages.

Statements can be grouped using ’{’ and ’}’ (begin .. end)

Conditional Statements

if (n == 3)

x = 3.0;

• no then keyword

• boolean condition within parentheses
13

.

if (x != 0)

y = 3.0 / x; // semicolon necessary

else

y = 1;

if (x != 0) {

y = 3.0 / x;

x = x + 1;

} else // NO semicolon

y = 1;

It is common practice to always include the braces, also if
they only contain one statement.

Logical operators: and – &&, or – ||, not – !
14

.

While and For statements:

double sum = 0.0;

double term = 1.0;

int k = 1;

while (term >= 0.00001) {

sum = sum + term;

term = term / k;

k++; // increment k

}

int i;

double sum = 0.0;

for (i = 1; i <= 100; i++) {

sum = sum + 1.0 / i;

}
15

.

do {

x = ...;

y = ...;

} while (y > 0);

Corresponds to a Repeat Until.
16

.

Case statements:

switch (x) {

case 1: S1; break;

case 3: S2; break;

case 4:

case 5: S3; break;

default: S4; break;

}

S1, etc can be a sequence of statements.
17

.

Object-Oriented Programming

Classes: A structure that defines the data (state) and the
operations (methods) that can be performed on that data
(the behavior). Abstract data type. A class without operations
corresponds to a ordinary record (Pascal) or struct (C).

Objects: An instance is an executable copy of a class. Another
name for instance is object (instance object).

Classes and objects provide:

• modularity

• information hiding
18

.

Object-Oriented Programming

Inheritance: A class inherits state and behavior from its su-
perclass (single inheritance) or superclasses (multiple inher-
itance). Subclasses can add state and behavior. Subclasses
can override (redefine) inherited state and behavior. In case of
single inheritance the classes form an inheritance tree (class
hierarchy)

Supports:

• re-usability

• mechanism for organizing and structuring software
19

.

Object-Oriented Programming

Polymorphism: The possibility to specify that methods
should take parameters that are of superclass type (specify
that variables should be of superclass type). In this case it is
possible to pass objects that are instances of the superclass or
of any of its subclasses as actual parameters to the method.
Powerful structuring mechanism.

20

.

Classes

A class declaration contains a set of attributes (fields or
instance variables) and functions (methods)

Attributes:

class Turtle {

private boolean penDown;

protected int x,y;

}

private: cannot be accessed outside the class

protected: can be accessed from within the class and all its
subclasses, but not from the outside

public: can be accessed from outside

A class without any methods can be viewed as a record
(struct) 21

.

Methods

class Turtle {

// attribute declarations

private int x,y;

public void jumpTo(int newX, int newY) {

x = newX;

y = newY;

}

public int getX() { // returns an integer

return x;

}

}

Public means that they can be accessed from the outside.

The object that the method belongs to can be accessed using
this.

22

.

Using Objects

Turtle t; // Reference variable

t = new Turtle(100,100);

int a = t.getX();

t.jumpTo(a + 100, 200);

Manual memory deallocation not needed.
23

.

Class attributes

By preceding the declaration of an attribute with static, the
attribute becomes a class variable, rather than an instance
variable. All instances share the same copy of the class
variable.

class Turtle {

private boolean penDown;

protected int x,y;

static int numTurtles = 0;

}

24

.

Class Methods

It is also possible for a method to be a class method, rather
than an instance method.

Class methods can only access class variables.

To specify that a method is a class method, the keyword
static is used.

Class methods (and class attributes) are accessible from the
class itself, in addition to from each instance of the class.
There does not need to be any instances in fact. This is, e.g.,
the way the mathematical functions in the Math class are used.

y = Math.sqrt(x);
25

.

Constructors

A special method that is called when the object is created.

Written like an ordinary method. Has the same name as the
class. Has no return type (not even void).

public Turtle (int initX, int initY) {

x = initX;

y = initY;

penDown = false;

numTurtles++;

}

It is possible to have multiple methods with the same name as
long as the method signatures are different (number and type
of arguments).

Often used for constructors.
26

.

Compilation

A source file may only contain one public class. The file should
have the same name as the public class + the extension .java

Compiled using: javac MyClass.java

The output (the byte code) will then have the name
MyClass.class

Executed by JVM through: java MyClass
27

.

The main method

Statements only within methods in classes. The method that
is called by the system when the program is started is called
main. Must be declared in the class that is started from the
command line. Must have the signature below.

The main method of the Turtle class.

public static void main(String[] args) {

Turtle t = new Turtle(100,200);

t.right(90);

while (t.getX() < 150) {

t.forward(2);

}

}

The main method is static, i.e., it cannot directly access instance
attributes. The way to do it is to start with creating an instance, and
then do the access through that instance.

args: command line arguments
28

.

Nested Classes

A class that is defined as a member of another class is called
a nested class.

Has unlimited access to its enclosing class’ members, even if
they are declared private.

A nonstatic nested class is known as an inner class. The most
usual form of nested classes.

Inner classes can also be anonymous classes, i.e. they have
no name.

29

.

Subclasses

class NinjaTurtle extends Turtle {

// Declarations for NinjaTurtle

}

Constructors:

public NinjaTurtle(int initX, int initY, String name) {

super(initX,initY); // Call constructor of super class

// more initializations

}
30

.

Method Overriding

A method in a class overrides any method with the same name
and parameters in any superclass.

A subclass cannot override methods that have been declared
final or methods that have been declared static.

It is possible to call overridden methods using the notation
super.method. Can be used to add functionality to a method
rather than replacing it.

31

.

Abstract Classes

Methods can be abstract. Contain only declarations without
any implementation. The method must be implemented in
some subclass.

public abstract void draw();

A class with at least one abstract method is itself called an
abstract class and must be declared as abstract class rather
than just class.

An abstract class cannot be instantiated.

It is sometimes useful to define classes to be abstract even
if they do not contain any abstract methods (to structure the
inheritance hierarchy).

32

.

Interfaces

A way of obtaining some of the functionality of multiple inheri-
tance without its problems.

An interface defines a protocol, i.e., a set of methods. Any
class may then implement the interface. A class may imple-
ment several interfaces.

Reference variables may be typed either by class or by inter-
face.

33

.

Example
interface Drawable {

void draw(SimpleWindow w);

int getWidth();

int getHeight();

}

class Rectangle implements Drawable {

private int xSide,ySide;

public void draw(SimpleWindow w) {

int x = w.getX();

int y = w.getY();

w.lineTo(x,y+ySide);

w.lineTo(x+xSide,y+ySide);

w.lineTo(x+xSide,y);

w.lineTo(x,y);

}
34

.
public int getWidth() {

return xSide;

}

public int getHeight() {

return ySide;

}

}

class Person implements Drawable {

private String name;

public void draw(SimpleWindow w) {

w.writeText(name);

}

public int getWidth() {

return 6*name.length();

}

public int getHeight() {

return 10;

}

}
35

.

void drawWithBorder(Drawable d, int x,

int y, SimpleWindow w); {

w.moveTo(x,y);

d.draw(w);

int width = d.getwidth();

int height = d.getHeight();

w.moveTo(x-2,y-2);

// do 4 calls to w.lineTo to draw the border

}

36

.

Interface Rules

An interface may only contain method and constant declara-
tions.

All methods in an interface are implicitly public and abstract.

A class may extend only one superclass but it may implement
several interfaces.

An interface can be used as a type name.

Interfaces may be extended just like classes, and an interface
may extend more than one interface.

37

.

Arrays

Similar to objects:

• accessed using reference variables

int[] someInts; // Integer array

Turtle[] turtleFamily; // Array of references to turtles

someInts = new int[30]; // Size when the array is created

int i;

for (i = 0, i < someInts.length; i++) {

someInts[i] = i * i; // Indices start at 0

}

.length predefined
38

.

Method Parameters

Java uses call-by-value for simple types. It is not possible
to pass out any values from formal parameters to actual
parameters.

Java uses call-by-reference for objects (really call-by-value
since the reference variables behave as pointers). A change to
a formal parameter object affects the actual parameter object.

39

.

References vs pointers

Java references are the same as safe pointers.

Manipulation of references not allowed (e.g., adding integers)

Compile-time checks guarantees that a reference is initialized
before it is used.

40

.

Memory allocation

• Static memory allocation - all memory allocated at start-up

• Dynamic memory allocation

– memory is allocated dynamically from the heap when
needed

∗ manual memory management
∗ the application explicitly allocates memory when

needed and deallocates it when no longer used
∗ Pascal, Modula-2, C, C++, ...
∗ problems: dangling pointers, memory leaks, fragmenta-

tion
– automatic memory management

∗ runtime system or OS deallocates memory automati-
cally

∗ garbage collection
∗ Java
∗ problem: takes time and may disturb the real-time

application

41

.

Java Garbage Collection

Runs as a low-priority thread

Incremental - work is divided into small pieces that are spread
out over execution.

Can be explicitly invoked by calling System.gc()

Real-time GC methods have been developed (Roger Henriks-
son, CS, LTH). Is part of Sun’s Real-Time Java 2.

42

.

Exceptions

An exception object is created when an error occurs in a
method.

Contains information about the exception (type, state of the
program)

The run-time systems tries to finding some code that handles
the exception.

Creating an exception and handing it to the run-time system =
throwing an exception

43

.

The run-time system searches backwards through the call
stack of the method until it finds a method containing an
appropriate exception handler (he type of the thrown exception
should be compatible with the type of the exception handled by
the exception handler)

The chosen handler is said to catch the exception.

If the runtime system does not find a handler the run-time
system and, hence, the Java application terminates.

44

.

Catching an exception

An exception handler consists of a try block together with at
least one catch block or one finally block

try {

// Code

} catch (Exception e) { // Type of exception handled

// Code to handle the exception

}

try {

// Code

} finally {

// Finally code. For cleanup. Always executed.

}
45

.

Specifying an exception

Instead of catching an exception, a method can decide to
instead simply specify that it may generate a exception.

The keyword throws is added to the method signature followed
by a comma-separated list of all the exceptions the method
throws.

The responsibility of the caller of the method to either catch or
specify these exceptions.

46

.

Exception types

• Runtime exceptions

– occur within the run-time system
– e.g. divide by zero
– the compiler does not require that these are caught or

specified

• Checked exception

– checked by the compiler
– requires that the exception is either caught or specified

Exceptions are normally thrown by the run-time system.
However, it is possible for an application to throw application-
specific errors.

throw new Exception1();
47

.

Common exceptions

Many Java methods used in real-time programs throws
checked exception.

For example:

• wait() throws InterruptedException

• sleep() throws InterruptedException

Try blocks common.
48

.

Packages

A collection of related classes, in one or several files.

Unspecified attributes get package visibility, i.e., they are public
to other classes in the package, private to other classes.

A class that should be accessible from the outside of the
package must be declared public and be written in a separate
file. The file should have the name of the class, and it may not
contain any other public classes.

Classes declared in files without a package specification
belong to the ’unnamed package’

49

.

Package Syntax

In file CommandButton.java

package Gui;

public class CommandButton {

...

}

50

.

Package Names

Standard packages

• java.xxx (e.g. java.awt and java.awt.event)

Java extension packages

• javax.xxx (e.g., javax.swing)

User-defined packages:

• globally unique names

• convention: reversed Internet domain name followed by
local directory structure (e.g., se.lth.cs.realtime and
se.lth.control.realtime)

All files belonging to the same package should be stored in a
directory with the name of the package.

51

.

Package Access

1. Explicit naming

B = new Gui.CommandButton();

2. Import one class

import Gui.CommandButton;

B = new CommandButton();

3. Import many classes

import Gui.*;

B = new CommandButton();

52

.

Standard Packages

java.lang – Object, Class, String, ...

Java.io – Streams and random-access files

java.awt – Abstract Window Toolkit

java.applet – Applet

java.util – Collections, Date, Time, ...

java.net – Sockets, Telnet, URLs, ...

...
53

.

Swing

Class package for graphical user interface implementation that
replaces the older AWT (Abstract Window Toolkit)

Supports buttons, menus, scrollbars, ...

All class names begins with J (JButton, JFrame, ...)

import javax.swing.*

import java.awt.*

import java.awt.event.*

54

.

Top-Level Containers

Every program that presents a Swing GUI contains at least
one top-level Swing container.

JFrame:

• implements a single main window

JDialog:

• implements a secondary, "pop-up" window
55

.

Intermediate Containers

Simplifies the positioning of components in window

JPanel:

• a panel (pane)

Other examples a JScrollPane and JTabbedPane.

Panes are themselves components
56

.

Atomic Components

Selfsufficient entities that presents information to the user or
implements some user control

• JButton - button

• JTextField - editable textfield

• JLabel - uneditable text field

• JSlider - slider

• PlotComponent - local plotter class

See

http://www.java.sun.com/docs/books/tutorial/uiswing/components/components.html
57

.

Layout Management

Controls the layout of components in an intermediate container.

BorderLayout:

• five areas: north, south, east, west, center

• default layout for every content pane

BoxLayout:

• puts components in a single row or column

FlowLayout:

• lays out components from left to right, starting new rows if
necessary

• default layout for JPanel

GridLayout:

• places components in a cell grid (matrix), all of the same
size

58

.

Event Handling

Each user action (key press, mouse movement, mouse click,
...) is considered an event.

The Swing system informs the Java application about an event
by creating an object of class AWTEvent.

Several subclasses:

• ActionEvent – generated when an event that is specific for
a certain component occurs (e.g. mouse click)

• TextEvent – generated when the contents of a text
component is changed

• ...
59

.

Listeners

When an event occurs, the Java system calls a method in a
listener object.

A listener object is an object that implements a listener inter-
face.

ActionListener

• contains actionPerformed(ActionEvent e)

• called when an ActionEvent object is generated

TextListener

• contains textValueChanged(TextEvent e)

• called when a TextEvent is created
60

.

Several components can listen to the same event.

Achieved by calling the addActionListener method of an event
source object with the listener object as the argument.

61

.

Event Methods

All event classes contain the method:

Object getSource(): – return the source object of the event

Some event classes contain event-specific methods:

char getKeyChar(); // KeyEvent

int getX(); int getY(); // MouseEvent

62

.

Setting up an event handler

Three bits of code:

1. declare that the event handler class implements a listener
interface

public class MyClass implements ActionListener {

2. register an instance of the event handler class as a
listener upon on or more components

someComponent.addActionListener(instanceOfMyClass);

3. code that implements the methods in the listener interface

public void actionPerformed(ActionEvent e) {

// code that reacts to the action

}
63

.

Event Dispatching Thread

Event-handling code executes in a single thread, the event-
dispatching thread. Ensures that each event handler will finish
executing before the next one executes.

Rule: Once a Swing component has been realized (painted
on screen), all code that might affect or depend on the state
of the component should be executed by the event-dispatching
thread.

A Swing top-level window is realized by calling one of the
method setVisible(true), show, pack

64

.

Exception to the rule

A few methods are thread-safe.

An Application’s GUI can often be constructed and shown in
the main thread.

Listener lists can be modified from any thread.

65

.

Execute code in the event-dispatching thread

Many application need to perform non-user-event-driven GUI
work after the GUI has been created:

• programs that must perform length initialization operations
before they can be used

• programs whose GUI must be updated as a result of some
event generated from the application - common in control
applications.

The SwingUtilities class contains two methods to help:

• invokeLater: registers some code to be executed in the
event-dispatching thread. Returns immediately, without
wait.

• invokeAndWait: Waits for the code to execute.
66

.

Often implemented using anonymous classes implementing
runnable

Runnable updateAComponent = new Runnable() {

public void run() {component.doSomething();}

};

SwingUtilities.invokeLater(updateAComponent);

Can be called from, e.g., a Regul or Opcom thread.

67

.

Swing Example

A periodic thread that generates a sine-wave.

The sinewave data is sent to a Swing-based GUI that plots the
sine wave using a PlotComponent.

The GUI also implements two sliders that makes it possible to
change the amplitude and frequency of the sine wave.

A monitor object used for the communiction between the GUI
and sine wave class. Implemented as an internal class of the
sine wave class.

68

.

Swing Example

Classes:

• Main – Separarate main class used during start-up.

• Sinus – the sine wave generator

– Monitor – Internal class inside Sinus

• Opcom – GUI

User threads:

• main thread during start-up

• Sinus – extends the Thread class

• Swing event-dispatching thread
69

.

Swing Panels

ampPanel freqPanel

plottersliderPanel

guiPanel

ampLabel

ampSlider freqSlider

freqLabel

70

