Lecture 15: Integrated Control and Scheduling
[These slides]

. Introduction

. Control task timing

. Control analysis with delay and jitter

. Control design to compensate for delay and jitter
. Scheduling design to reduce delay and jitter

. TrueTime: A MATLAB/Simulink-based simulator for real-time
control systems
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1. Introduction

Typical control system development today:

Control Department Software Department

Requirements

N

Algorithm Design

Functional Test

Control
Design
- plant/algorithm >

models E

Unit/Structural Test

Software Design

Problems

The control engineer does not care about the implementa-
tion

- “trivial”

- “buy a fast computer”

The software engineer does not understand controller
timing

-, = (T3, D;, Cy)"

- “hard deadlines”

Control theory and real-time scheduling theory have
evolved as separate subjects for more than thirty years

In the Beginning...

Liu and Layland (1973): “Scheduling algorithms for multipro-
gramming in a hard-real-time environment.”

¢ Rate-monotonic (RM) scheduling
o Earliest-deadline-first (EDF) scheduling
e Actually motivated by process control

- Samples “arrive” periodically

- Control response must be computed before end of
period

- “Any control loops closed within the computer must be
designed to allow at least an extra unit sample delay.”

Common Assumptions about Control Tasks

In the simple task model, a task z; is described by
o a fixed period T;
o a fixed, known worst-case execution time C;
e a hard relative deadline D; = T;

Is this model suitable for control tasks?

Fixed Period?

Not necessarily:

e Some controllers are not sampled against time
- Engine controllers

e Some controllers may switch between different modes with
different sampling intervals

- Hybrid controllers

e The sampling period could be on-line adjusted by a
supervisory task (“feedback scheduling”)




Fixed and Known WCET?

Not always:
e WCET analysis is a very hard problem
- May have to use estimates or measurements

e Some controllers may switch between different modes with
different execution times

- Hybrid controllers

e Some controllers can explicitly trade off execution time for
quality of control
- “Any-time” optimization algorithms
— Model-predictive controllers (MPC)
- Long execution time =- high quality of control

Hard Deadlines?

Most often not:

e Controller deadlines are often firm rather than hard

- OK to miss a few outputs, but not too many in a row
- Depends on what happens when a deadline is missed:

+ Task is allowed to complete late — often OK
x Task is aborted at the deadline — worse

o At the same time, meeting all deadlines does not guaran-
tee stability of the control loop

- D; = T; is motivated by runability conditions only

Inputs and Outputs?

Completely missing from the simple task model:

e When are the inputs (measurement signals) read?
- Beginning of period?
- When the task starts?
e When are the outputs (control signals) written?
- When the task finishes?
- End of Calculate Output?
- End of period?

Inverted Pendulum Example

Control of three inverted pendulums using one CPU:

Uy Uz

y1 —= CPU - U1
yo — = + = U2
Y3 —= RTOS U3

The Inverted Pendulum

u
A simple second-order model is given by

d? .
d—tg=wgsmy+uwgcosy

where @y = \/§ is the natural frequency of the pendulum.

Lengths I =1,2,3 cm = w, = 31, 22, 18 rad/s

Control Design

Linearization around the upright equilibrium gives the state-

space model
de (0 1 0
dt = [wg o) [wg]“
y= { 1 O] x
Digital controller: state feedback from observer w. direct term

o State feedback poles specified in continuous time as

s+ 1405+ > =0

e Observer poles specified in continuous time as

s+ 14w,5 + 02 =0




Control Design

o State feedback poles: w. = 53, 38, 31 rad/s
e Observer poles: w, = 106, 75, 61 rad/s
e Sampling intervals: T' = 10, 14.5, 17.5 ms

e Sampling at the beginning of the period, actuation at the
end of execution

e Assumed execution time: C = 3.5 ms

Simulation 1 — Ideal Case

Each control task runs on a separate CPU.
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Schedulability Analysis

Assume D; = T;
Utilization U = 377, & = 0.79
Schedulable under EDF?

U<l = Yes

Schedulable under RM?
U>3(2Y-1)=0.78 = Cannot say

Must compute worst-case response times R;:

Task T D (o} R
1 10 10 385 35
2 145 145 35 7.0
3 175 175 3.5 14.0

Vi: R; <D; = Yes

Simulation 2 — Rate-Monotonic Scheduling
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e Loop 3 becomes unstable

Simulation 3 — Earliest-Deadline-First Scheduling
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o All loops are OK

Questions

e How can a loop become unstable even though the system
is schedulable?

e Why does EDF work better than RM in this example?

Need to study control loop timing




2. Control Task Timing

Periodic task executing in a multi-tasking system:

Rip 1 Rip * Rip+1
; e
i I 1 .
Tik—1 Sik-1 fir-1 Tik Sik firg  Tik+l Sik+1 fip41

o ri; = kT; — release time of job % of task i

e s;; — start time of job % of task i

o f; 1 — finish time of job % of task i

e R;; — response time of job % of task i

e R; = max; R;; — worst-case response time of task i

Response Times in the Pendulum Example

Histograms of measured response times during a 1-second
simulation under rate-monotonic scheduling:
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e The maximum values agree with the theoretical worst-case
response times

e Under RM scheduling: low priority = large variability

Response Times in the Pendulum Example

Histograms of measured response times under EDF schedul-
ing:
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e Smaller variability for Task 3 compared to RM scheduling

Latency and Jitter in Control Tasks

Rijp 1 Rip Rip1
Lioa Lo L L Linn  Liq
7 O [ i | i ;

¥i(t)

ui(t) S T
T T T T T T T T T t
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e L}, — sampling latency of job % of task i
. L;ﬁ"k — input-output latency of job % of task i
o J =max;, L}, — min;, L}, — sampling jitter of task i
e J° = max; Li9, — min, L, — input-output jitter of task i 2

3. Control Analysis with Delay and Jitter

e Constant delay in linear systems — straightforward
e Sampling and input-output jitter — more difficult
- Worst-case stability analysis
x Only input-output jitter
x Requires minimum and maximum values for the
input-output latency
x Stability theorem by Kao and Lincoln

- Average-case, stochastic performance analysis
« Requires a stochastic model of the latencies
x Jitterbug toolbox

- Simulation
x TrueTime toolbox

Analysis of Constant Input-Output Delay

e Delay decreases the phase margin

o Definition: the delay margin L,, is the maximum constant
delay the loop can tolerate before it goes unstable

o Continuous-time systems:
Lm = (pm/a)c

- This formula is only approximate for sampled control
systems

- For sampled control systems, we must compute a root
locus with respect to L to find the exact value of L,,




Approximate and Exact Delay Margins in the
Pendulum Example

Controller ¢,,/®. (ms) L, (ms)
1 9.15 9.17
2 12.92 12.95
3 15.84 15.88

Limitations of Analysis using Delay Margin

e Only holds for linear systems

e Only holds for constant delays

Jitter Margin — Stability under Input-Output Jitter
Stability theorem due to Kao and Lincoln (2004):

o Continuous-time plant P(s)

e Continuous-time controller C(s)

Arbitrarily time-varying delay A € [0, ¢J]

e Theorem: The closed-loop system is stable if

Graphical test:

Bode Magnitude Diagram

Magnitude (abs)
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Stable

Magnitude (abs)

Bode Magnitude Diagram

|tire

10
Frequency (rad/sec)

Could be unstable

(Note that the theorem gives a sufficient but not necessary

condition for stability)

P(iw)C(iw) 1
1+ Pi0)CGi0)| < dw "@ €[00k
Proof Sketch Stability Under Jitter — Sampled Control Case

Uses nonlinear control theory. Rewrite the control output as
one direct path and one error path:

A-1 == Ps)]
Gain of left part: J
Gain of right part: max %

The result follows from the Small Gain Theorem

The sampled control case is more complicated.

Assume continuous-time plant P(s), discrete-time controller
C(z) and input-output jitter J < h.

The closed-loop system is stable if

1

, Vo€ [0,7]

‘ Palias(w)c(eiw)
1+ PZOH(ei”’)C(ei”’)

where

< V|eiv —1

oo . 2
L4 alias(w) = \/Zk:—oo |P (l(CU + Zﬂk)%)}
e Pzon(2) is the ZOH-discretization of P(s)




Jitter Margins in the Pendulum Example

Definition: the jitter margin </,, be the largest jitter such that
the closed-loop system is still guaranteed to be stable.

Delay margins and jitter margins for the pendulums:

Controller L,, (ms) o, (ms)

Limitations of Analysis using the Jitter Margin

e Only holds for linear systems
e Assumes zero sampling jitter

e Only uses knowledge of the minimum and maximum input-
output latencies

e Does not exploit any statistical properties about the jitter

1 9.17 8.30
2 1295  11.72
3 15.88  14.37
Jitterbug Jitterbug Model — Example

e Matlab toolbox for stochastic control analysis (Lincoln and
Cervin, 2002)

¢ Random delays in the control loop described by probability
distributions

o System disturbed by white noise
e Performance measured by quadratic cost function

V =E 27Qx

- Small V < good performance
- V = o0 < unstable control loop

Signal model: Timing model:

e P(s) — process

e S(z) — sampler, C(z) — controller and actuator

e L, L;, — latency distributions (random variables)
e Cost function: V = E »?

Jitterbug — Example Script

dt = h/5; % time granularity
PLs = [0.2 0.2 0.6 0 0 0]; % distribution of Ls
PLio = [0.5 0 0 0 0 0.5]; % distribution of Lio

N = initjitterbug(dt,h);

N = addtimingnode(N,1,PLs,2); % node 1

N = addtimingnode(N,2,PLio,3); % node 2

N = addtimingnode(N,3); % node 3

N = addcontsys(N,1,plant,3,Q,R1,R2); % plant

N = adddiscsys(N,2,1,1,2); % sampler in node 2

N = adddiscsys(N,3,ctrl,2,3); % controller in node 3
N = calcdynamics(N) ;

V = calccost(N)

Jitterbug Example 1

Pendulum controller 3: Evaluate cost for different values of
constant delay input-output delay L:
5 .




Jitterbug Example 2

Pendulum controller 3: Cost vs random delay L € U(0, Lyy):
5 T

Jitterbug Example 3

Pendulum controller 3: Cost vs average |-O delay and I-O jitter
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Limitations of Analysis using Jitterbug

e Only holds for linear systems

e Very simplistic stochastic model with independent random
delays

o Calculates the average-case performance

4. Control Design to Compensate for Delay and
Jitter

Classical Smith predictor for delay compensation:

Controller

deadtime

Problem: Only works if the process model is stable

Example: Pendulum Controller with Smith
Predictor
h=0.1,
7=02

20

0 5

0
N
-10

5

Time

e The controller thinks that it is doing the right thing
e Based on feedforward rather than feedback

Delay Compensation — More General

Design procedure:

o Design controller G, for delay-free process G,
e Add compensator

Ti(s) = Gpls) — Gpls)e™

to cope with deadtime process G,e™*"




Many Different Compensators Have Been
Proposed

e Smith predictor: .
Gp(s) = Gp(s)

o Watanabe—lto predictor:
G,(s) = Ce*"(sI — A)™'B — C/ e4dsB
0

- Guarantees that the controller retains integral action

Observer—Predictor
In a state feedback—observer structure, delay control signal to
the observer and compute the feedback from a predicted state:

di(t)
dt

t
xp(t) = eA7R(t) + / A=) Bu(s)ds

Jit—1

= A&(t) + Bu(t—1) + K(y(t) - Ca%(t))

u(t) = —Lxp(t)

u

y
Process

Better — Digital Design

e Include the delay in the process description
e Sample the process with the delay
e Design a controller for the sampled system
- A simple option is to place the extra poles in the origin
x Corresponds to the observer—predictor
x Might be too aggressive

- Try to respect the rule of thumb
o(h+27t) =011t 05

where o is the bandwidth of the closed-loop system

Pendulum Controller with Delay Compensation
using Digital Design

h =01,
7=02

1
>
0

0 5

0
=
-10

0 5
Time

e Shaky response, but stable
e w(h+27)=14

Coping with Jitter
Three approaches
o Ignore the jitter

e Design a robust controller

e Design a controller that actively compensates for the jitter
in each sample
- Requires that the latencies are measured
- Problem: the input-output latency in the current sample
is not known when the control signal is computed

Coping with Input-Output Jitter
Sampled model with varying delay z;:
x(k+ 1) = dx(k) + To(zp)u(k) + T1(zp)u(k — 1)

e Design the feedback

u(k) = -L [u(i(f)l)]

based on the average (expected) input-output delay
¢ Modify the observer to take into account current delay z;:

#(k+ 1) = ®&(k) + To(rr)u(k) + T1(tr)u(k — 1) + K(y(k) — C&(k))

Similar techniques can be used for sampling jitter




5. Scheduling Design to Reduce Delay and Jitter

A control algorithm normally consists of two parts:

while (1) {
read_input();
calculate_output();
write_output();
update_state();

}
Idea: schedule the two parts as separate tasks
e input, calculate, output — high priority
e update — low priority

Subtask Scheduling Analysis

Tus T :

0 Dys=T t
TCO ! T T

0 Dco T t

e Calculate Output (z¢o) should have as short deadline as
possible

e Update State (rys) can have deadline Dys=T.

A Deadline Assignment Algorithm

Assume we have a number of control tasks that can be divided
into Calculate Output and Update State.

1. Start by assigning initial deadlines
e Deo:=T —Cys

Inverted Pendulum Example (Again)

Control of three inverted pendulums using one CPU:

o DUS =T
for all tasks.
X i X L ui Uz
2. Assign deadline-monotonic priorities to all subtasks
3. Calculate the response time R of each subtask
4. Assign D¢o := R for all tasks Y1 ] cPU L g
5. Repeat from 2 until no further improvement. Yo —=] + U2
RTOS
y3 —=| U3
Simulation under RM scheduling Simulation under RM scheduling
15 Pendulum 1 15 Pendulum 2 4 Pendulum 3 Schedule (high=running, medium=ready, low=sleeping)
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-0.5 -0.5 -4 o
0.1 0.2 0.3 0.1 0.2 0.3 0 0.1 0.2 0.3 < ‘ ’ ‘ ’
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e Large delay and jitter for controller 3




Subtask Scheduling Analysis

Each pendulum controller is divided into two subtasks:

e Calculate output: Cco = 1.5 ms
e Update state: Cys = 2.0 ms

First iteration of algorithm:

T D C R
Tco, 100 80 15 15
tys; 100 10.0 2.0 35
Tecos 145 125 15 50
Tuss 145 145 2.0 7.0
Tcos 175 155 15 85
Tuss 175 175 2.0 14.0

Subtask Scheduling Analysis

Third iteration (converged):

T D C R
tcor 10.0 15 15 [1.5]
tys: 100 10.0 2.0 65
Tcos 145 3.0 15
Tuss 145 145 20 85
Tcos 175 45 15 [45]
Tyss 175 175 2.0 14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.

Simulation under Subtask Scheduling
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Simulation under Subtask Scheduling

Schedule (high=running, medium=ready, low=sleeping)

Task 3

Task 2

Task 1

0 0.05 0.1 0.15 0.2 0.25 0.3

e More context switches

6. The TrueTime Simulator

e MATLAB/Simulink toolbox by Henriksson, Cervin, Ohlin,
Eker (1999-2008)

o TrueTime supports co-simulation of control task execution,

network communication, and plant dynamics

- Simulink blocks model real-time kernels and communi-
cation networks

- The kernels execute user code (tasks and interrupt
handlers) written in C++ or MATLAB code

- The simulated application is programmed in much the
same way as a real application

Why Co-Simulation?

o Networked embedded systems are very complex systems
o Nonlinear system dynamics
e Temporal nondeterminism
- preemption by higher-priority tasks, blocking, varying
computation times, kernel overhead, ...

- network interface delays, queuing delays, transmission
and retransmission delays, lost packets, ...




The TrueTime Block Library
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o A Kernel block, three Network blocks, and a Battery block
- Simulink S-functions written in C++
- Event-based execution using zero-crossing functions
- Portable to other simulation environments

Example — Networked Control Loop

Nod
(Intartare:

Node 3
{Controlien) |

Reterence
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Example — Networked Control Loop
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The Kernel Block

o Simulates a generic real-time kernel with
A/D-D/A and network interfaces

o iy

o Executes user-defined tasks and interrupt |
nterupts Schedule
handlers Mondtars
Rev P

e Supports various scheduling policies TrueTime Kemel

e Supports all common real-time primitives
(timers, monitors, semaphores, mailboxes,
dynamic task attributes, ...)

o More features: context switch overheads,
overrun handlers, data logging, ...

Example of Kernel Initialization Script

nbrInputs = 3;
nbrQutputs = 3;
ttInitKernel (nbrInputs, nbrOutputs, ’prioFP’);
periods = [0.01 0.02 0.04];
code = 'my_ctrl’;
fork=1:3
data.u =0;
taskname = [’Task ’ num2str(k)];
offset = 0;
period = periods(k);
prio = k;
ttCreatePeriodicTask(taskname,offset,period,prio,code,d
ata);
end

Code Functions

e Each task or interrupt handler in the user application must
be implemented in a code function

e The code function is called repeatedly by the kernel during
the simulation

- The simulated execution time is returned by the func-
tion
e Three options for the implementation:

- C++ code (fast)
- MATLAB code (medium)
- Simulink block diagram (slow)
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Example of a MATLAB Code Function

function [exectime,datal = my_ctrl(segment,data)
switch segment,
case 1,
data.y = ttAnalogIn(1);
data.u = calculate_output(data.x,data.y);
exectime = 0.002;
case 2,
ttAnalogOut (1,data.u);
data.x = update_state(data.x,data.y);
exectime = 0.004;
case 3,
exectime = -1;
end

The Wired Network Block
e Supports six common MAC layer
policies:
- CSMA/CD (Ethernet)
- CSMA/AMP (CAN)
- Round Robin (Token bus)
- FDMA
- TDMA
- Switched Ethernet
e Policy-dependent network parame-
ters
e Generates a transmission schedule

Rev

Snd 1
Schedule )

TrusTime Metwork o

The Wireless Network Block

e Used in basically the same way as
the wired network block
e Supports two common MAC layer
policies:
- 802.11b/g (WLAN)
- 802.15.4 (ZigBee)
e Variable network parameters
e x and y inputs for node locations
e Generates a transmission schedule

Snd Rew

* 1 Schedule

y P

TrueTime Wireless
Network

TrueTime Demo: Robot Soccer

e 5+5 mobile robots communicating over a wireless network




