
Lecture 15: Integrated Control and Scheduling

[These slides]

1. Introduction

2. Control task timing

3. Control analysis with delay and jitter

4. Control design to compensate for delay and jitter

5. Scheduling design to reduce delay and jitter

6. TrueTime: A MATLAB/Simulink-based simulator for real-time
control systems
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1. Introduction

Typical control system development today:
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Problems

• The control engineer does not care about the implementa-

tion

– “trivial”

– “buy a fast computer”

• The software engineer does not understand controller

timing

– “τ i = (Ti, Di, Ci)”
– “hard deadlines”

• Control theory and real-time scheduling theory have
evolved as separate subjects for more than thirty years
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In the Beginning. . .

Liu and Layland (1973): “Scheduling algorithms for multipro-

gramming in a hard-real-time environment.”

• Rate-monotonic (RM) scheduling

• Earliest-deadline-first (EDF) scheduling

• Actually motivated by process control

– Samples “arrive” periodically

– Control response must be computed before end of

period

– “Any control loops closed within the computer must be

designed to allow at least an extra unit sample delay.”
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Common Assumptions about Control Tasks

In the simple task model, a task τ i is described by

• a fixed period Ti

• a fixed, known worst-case execution time Ci

• a hard relative deadline Di = Ti

Is this model suitable for control tasks?
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Fixed Period?

Not necessarily:

• Some controllers are not sampled against time

– Engine controllers

• Some controllers may switch between different modes with

different sampling intervals

– Hybrid controllers

• The sampling period could be on-line adjusted by a

supervisory task (“feedback scheduling”)
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Fixed and Known WCET?

Not always:

• WCET analysis is a very hard problem

– May have to use estimates or measurements

• Some controllers may switch between different modes with

different execution times

– Hybrid controllers

• Some controllers can explicitly trade off execution time for

quality of control

– “Any-time” optimization algorithms

– Model-predictive controllers (MPC)

– Long execution time [ high quality of control
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Hard Deadlines?

Most often not:

• Controller deadlines are often firm rather than hard

– OK to miss a few outputs, but not too many in a row

– Depends on what happens when a deadline is missed:

∗ Task is allowed to complete late – often OK

∗ Task is aborted at the deadline – worse

• At the same time, meeting all deadlines does not guaran-

tee stability of the control loop

– Di = Ti is motivated by runability conditions only
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Inputs and Outputs?

Completely missing from the simple task model:

• When are the inputs (measurement signals) read?

– Beginning of period?

– When the task starts?

• When are the outputs (control signals) written?

– When the task finishes?

– End of Calculate Output?

– End of period?

9



Inverted Pendulum Example

Control of three inverted pendulums using one CPU:
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The Inverted Pendulum

l

y

u

A simple second-order model is given by

d2y

dt2
= ω 20 sin y+ uω 20 cos y

where ω 0 =
√�
l

is the natural frequency of the pendulum.

Lengths l = 1, 2, 3 cm [ ω 0 = 31, 22, 18 rad/s
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Control Design

Linearization around the upright equilibrium gives the state-

space model

dx

dt
=









0 1

ω 20 0




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
x +









0

ω 20








u

y=


1 0



 x

Digital controller: state feedback from observer w. direct term

• State feedback poles specified in continuous time as

s2 + 1.4ω cs+ω 2c = 0

• Observer poles specified in continuous time as

s2 + 1.4ω os+ω 2o = 0
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Control Design

• State feedback poles: ω c = 53, 38, 31 rad/s

• Observer poles: ω o = 106, 75, 61 rad/s

• Sampling intervals: T = 10, 14.5, 17.5 ms

• Sampling at the beginning of the period, actuation at the

end of execution

• Assumed execution time: C = 3.5 ms
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Simulation 1 – Ideal Case

Each control task runs on a separate CPU.
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Schedulability Analysis

• Assume Di = Ti
• Utilization U =

∑3

i=1
Ci
Ti
= 0.79

• Schedulable under EDF?

U < 1 [ Yes

• Schedulable under RM?

U > 3(21/3 − 1) = 0.78 [ Cannot say

Must compute worst-case response times Ri:

Task T D C R

1 10 10 3.5 3.5

2 14.5 14.5 3.5 7.0

3 17.5 17.5 3.5 14.0

∀i : Ri < Di [ Yes
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Simulation 2 – Rate-Monotonic Scheduling
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Simulation 3 – Earliest-Deadline-First Scheduling
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Questions

• How can a loop become unstable even though the system

is schedulable?

• Why does EDF work better than RM in this example?

Need to study control loop timing
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2. Control Task Timing

Periodic task executing in a multi-tasking system:

ri,k−1 ri,k ri,k+1si,k−1 fi,k−1 si,k fi,k si,k+1 fi,k+1

Ri,k−1 Ri,k Ri,k+1

τ i
tt

• ri,k = kTi – release time of job k of task i

• si,k – start time of job k of task i

• fi,k – finish time of job k of task i

• Ri,k – response time of job k of task i

• Ri = maxk Ri,k – worst-case response time of task i
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Response Times in the Pendulum Example

Histograms of measured response times during a 1-second

simulation under rate-monotonic scheduling:
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• Under RM scheduling: low priority [ large variability
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Response Times in the Pendulum Example

Histograms of measured response times under EDF schedul-

ing:
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• Smaller variability for Task 3 compared to RM scheduling
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Latency and Jitter in Control Tasks

yi(t)

ui(t)

ri,k−1 ri,k ri,k+1

Ls
i,k−1 Lio

i,k−1 Ls
i,k Lio

i,k
Ls
i,k+1 Lio

i,k+1

si,k−1 fi,k−1 si,k fi,k si,k+1 fi,k+1

Ri,k−1 Ri,k Ri,k+1

τ i

t

t

• Lsi,k – sampling latency of job k of task i

• Lioi,k – input-output latency of job k of task i

• Jsi = maxk Lsi,k −mink Lsi,k – sampling jitter of task i

• J ioi = maxk Lioi,k −mink Lioi,k – input-output jitter of task i 22



3. Control Analysis with Delay and Jitter

• Constant delay in linear systems – straightforward

• Sampling and input-output jitter – more difficult

– Worst-case stability analysis

∗ Only input-output jitter

∗ Requires minimum and maximum values for the

input-output latency

∗ Stability theorem by Kao and Lincoln

– Average-case, stochastic performance analysis

∗ Requires a stochastic model of the latencies

∗ Jitterbug toolbox

– Simulation

∗ TrueTime toolbox
23



Analysis of Constant Input-Output Delay

• Delay decreases the phase margin

• Definition: the delay margin Lm is the maximum constant

delay the loop can tolerate before it goes unstable

• Continuous-time systems:

Lm = ϕm/ω c
– This formula is only approximate for sampled control

systems

– For sampled control systems, we must compute a root

locus with respect to L to find the exact value of Lm
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Approximate and Exact Delay Margins in the

Pendulum Example

Controller ϕm/ω c (ms) Lm (ms)

1 9.15 9.17

2 12.92 12.95

3 15.84 15.88
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Limitations of Analysis using Delay Margin

• Only holds for linear systems

• Only holds for constant delays
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Jitter Margin – Stability under Input-Output Jitter

Stability theorem due to Kao and Lincoln (2004):

P(s)

C(s)

∆

Σ−

• Continuous-time plant P(s)
• Continuous-time controller C(s)
• Arbitrarily time-varying delay ∆ ∈ [0, J]
• Theorem: The closed-loop system is stable if

∣

∣

∣

∣

P(iω )C(iω )
1+ P(iω )C(iω )

∣

∣

∣

∣

< 1

Jω
∀ω ∈ [0,∞].
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Graphical test:

Bode Magnitude Diagram
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28



Proof Sketch

Uses nonlinear control theory. Rewrite the control output as

one direct path and one error path:

P(s)

C(s)

Σ−−

1
s

∆−1

s

Gain of left part: J

Gain of right part: max
ω

∣

∣

∣

∣

iω P(iω )C(iω )
1+ P(iω )C(iω )

∣

∣

∣

∣

The result follows from the Small Gain Theorem
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Stability Under Jitter – Sampled Control Case

The sampled control case is more complicated.

Assume continuous-time plant P(s), discrete-time controller

C(z) and input-output jitter J ≤ h.

The closed-loop system is stable if
∣

∣

∣

∣

Palias(ω )C(eiω )
1+ PZOH(eiω )C(eiω )

∣

∣

∣

∣

< 1√
J
∣

∣eiω − 1
∣

∣

, ∀ω ∈ [0,π ]

where

• Palias(ω ) =
√

∑∞
k=−∞

∣

∣P
(

i(ω + 2π k) 1
h

)∣

∣

2

• PZOH(z) is the ZOH-discretization of P(s)
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Jitter Margins in the Pendulum Example

Definition: the jitter margin Jm be the largest jitter such that

the closed-loop system is still guaranteed to be stable.

Delay margins and jitter margins for the pendulums:

Controller Lm (ms) Jm (ms)

1 9.17 8.30

2 12.95 11.72

3 15.88 14.37
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Limitations of Analysis using the Jitter Margin

• Only holds for linear systems

• Assumes zero sampling jitter

• Only uses knowledge of the minimum and maximum input-

output latencies

• Does not exploit any statistical properties about the jitter
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Jitterbug

• Matlab toolbox for stochastic control analysis (Lincoln and

Cervin, 2002)

• Random delays in the control loop described by probability

distributions

• System disturbed by white noise

• Performance measured by quadratic cost function

V = E xTQx

– Small V \ good performance

– V = ∞ \ unstable control loop
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Jitterbug Model – Example

S(z)
S(z)

C(z)
C(z)

P(s)
yu

1

2

3

Ls

Lio

Signal model: Timing model:

• P(s) – process

• S(z) – sampler, C(z) – controller and actuator

• Ls, Lio – latency distributions (random variables)

• Cost function: V = E y2
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Jitterbug – Example Script

dt = h/5; % time granularity

PLs = [0.2 0.2 0.6 0 0 0]; % distribution of Ls

PLio = [0.5 0 0 0 0 0.5]; % distribution of Lio

N = initjitterbug(dt,h);

N = addtimingnode(N,1,PLs,2); % node 1

N = addtimingnode(N,2,PLio,3); % node 2

N = addtimingnode(N,3); % node 3

N = addcontsys(N,1,plant,3,Q,R1,R2); % plant

N = adddiscsys(N,2,1,1,2); % sampler in node 2

N = adddiscsys(N,3,ctrl,2,3); % controller in node 3

N = calcdynamics(N);

V = calccost(N)
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Jitterbug Example 1

Pendulum controller 3: Evaluate cost for different values of

constant delay input-output delay L:
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Jitterbug Example 2

Pendulum controller 3: Cost vs random delay L ∈ U(0, Lmax):
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Jitterbug Example 3

Pendulum controller 3: Cost vs average I-O delay and I-O jitter
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Limitations of Analysis using Jitterbug

• Only holds for linear systems

• Very simplistic stochastic model with independent random

delays

• Calculates the average-case performance
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4. Control Design to Compensate for Delay and

Jitter

Classical Smith predictor for delay compensation:

replacements

r

−
−

Σ

Σ

u y

y1

y2

Controller Process

Model

Modelw/o
deadtime

Problem: Only works if the process model is stable
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Example: Pendulum Controller with Smith

Predictor
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h = 0.1,
τ = 0.2

• The controller thinks that it is doing the right thing

• Based on feedforward rather than feedback
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Delay Compensation – More General

r e
Σ Σ

u y
Gc Gpe

−sτ

Π

−1

Design procedure:

• Design controller Gc for delay-free process Gp

• Add compensator

Π(s) = G̃p(s) − Gp(s)e−sτ

to cope with deadtime process Gpe
−sτ
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Many Different Compensators Have Been

Proposed

• Smith predictor:
G̃p(s) = Gp(s)

• Watanabe–Ito predictor:

G̃p(s) = CeAτ (sI − A)−1B − C
∫ τ

0

e−AsdsB

– Guarantees that the controller retains integral action

• . . .
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Observer–Predictor

In a state feedback–observer structure, delay control signal to

the observer and compute the feedback from a predicted state:

dx̂(t)
dt

= Ax̂(t) + Bu(t− τ ) + K
(

y(t) − Cx̂(t)
)

xp(t) = eAτ x̂(t) +
∫ t

t−τ

eA(t−s)Bu(s)ds

u(t) = −Lxp(t)

Σ
u y

Process

e−sτ Observ.

Pred.

L

−

x̂xp
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Better – Digital Design

• Include the delay in the process description

• Sample the process with the delay

• Design a controller for the sampled system

– A simple option is to place the extra poles in the origin

∗ Corresponds to the observer–predictor

∗ Might be too aggressive

– Try to respect the rule of thumb

ω (h+ 2τ ) = 0.1 to 0.5

where ω is the bandwidth of the closed-loop system
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Pendulum Controller with Delay Compensation

using Digital Design
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• Shaky response, but stable

• ω (h+ 2τ ) = 1.4
46



Coping with Jitter

Three approaches

• Ignore the jitter

• Design a robust controller

• Design a controller that actively compensates for the jitter

in each sample

– Requires that the latencies are measured

– Problem: the input-output latency in the current sample

is not known when the control signal is computed
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Coping with Input-Output Jitter

Sampled model with varying delay τ k:

x(k+ 1) = Φx(k) + Γ0(τ k)u(k) + Γ1(τ k)u(k− 1)

• Design the feedback

u(k) = −L






x̂(k)
u(k− 1)







based on the average (expected) input-output delay

• Modify the observer to take into account current delay τ k:

x̂(k+ 1) = Φ x̂(k) + Γ0(τ k)u(k) + Γ1(τ k)u(k− 1) + K (y(k) − Cx̂(k))

Similar techniques can be used for sampling jitter
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5. Scheduling Design to Reduce Delay and Jitter

A control algorithm normally consists of two parts:

while (1) {

read_input();

calculate_output();

write_output();

update_state();

...

}

Idea: schedule the two parts as separate tasks

• input, calculate, output – high priority

• update – low priority
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Subtask Scheduling Analysis

0

0 DUS=T

DCO T

τCO

τUS

t

t

• Calculate Output (τCO) should have as short deadline as

possible

• Update State (τUS) can have deadline DUS=T .
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A Deadline Assignment Algorithm

Assume we have a number of control tasks that can be divided

into Calculate Output and Update State.

1. Start by assigning initial deadlines

• DCO := T − CUS
• DUS := T

for all tasks.

2. Assign deadline-monotonic priorities to all subtasks

3. Calculate the response time R of each subtask

4. Assign DCO := RCO for all tasks

5. Repeat from 2 until no further improvement.
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Inverted Pendulum Example (Again)

Control of three inverted pendulums using one CPU:
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Simulation under RM scheduling
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Simulation under RM scheduling

Schedule (high=running, medium=ready, low=sleeping)
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• Large delay and jitter for controller 3
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Subtask Scheduling Analysis

Each pendulum controller is divided into two subtasks:

• Calculate output: CCO = 1.5 ms

• Update state: CUS = 2.0 ms

First iteration of algorithm:

T D C R

τCO1 10.0 8.0 1.5 1.5

τUS1 10.0 10.0 2.0 3.5

τCO2 14.5 12.5 1.5 5.0

τUS2 14.5 14.5 2.0 7.0

τCO3 17.5 15.5 1.5 8.5

τUS3 17.5 17.5 2.0 14.0
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Subtask Scheduling Analysis

Third iteration (converged):

T D C R

τCO1 10.0 1.5 1.5 1.5

τUS1 10.0 10.0 2.0 6.5

τCO2 14.5 3.0 1.5 3.0

τUS2 14.5 14.5 2.0 8.5

τCO3 17.5 4.5 1.5 4.5

τUS3 17.5 17.5 2.0 14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.

56



Simulation under Subtask Scheduling
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Simulation under Subtask Scheduling

Schedule (high=running, medium=ready, low=sleeping)
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• More context switches
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6. The TrueTime Simulator

• MATLAB/Simulink toolbox by Henriksson, Cervin, Ohlin,

Eker (1999–2008)

• TrueTime supports co-simulation of control task execution,

network communication, and plant dynamics

– Simulink blocks model real-time kernels and communi-

cation networks

– The kernels execute user code (tasks and interrupt

handlers) written in C++ or MATLAB code

– The simulated application is programmed in much the

same way as a real application
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Why Co-Simulation?

• Networked embedded systems are very complex systems

• Nonlinear system dynamics

• Temporal nondeterminism

– preemption by higher-priority tasks, blocking, varying

computation times, kernel overhead, . . .

– network interface delays, queuing delays, transmission

and retransmission delays, lost packets, . . .
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The TrueTime Block Library

• A Kernel block, three Network blocks, and a Battery block

– Simulink S-functions written in C++

– Event-based execution using zero-crossing functions

– Portable to other simulation environments
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Example – Networked Control Loop

62



Example – Networked Control Loop
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The Kernel Block

• Simulates a generic real-time kernel with

A/D-D/A and network interfaces

• Executes user-defined tasks and interrupt

handlers

• Supports various scheduling policies

• Supports all common real-time primitives

(timers, monitors, semaphores, mailboxes,

dynamic task attributes, . . . )

• More features: context switch overheads,

overrun handlers, data logging, . . .
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Example of Kernel Initialization Script

nbrInputs = 3;

nbrOutputs = 3;

ttInitKernel(nbrInputs, nbrOutputs, ’prioFP’);

periods = [0.01 0.02 0.04];

code = ’my_ctrl’;

for k = 1:3

data.u = 0;

taskname = [’Task ’ num2str(k)];

offset = 0;

period = periods(k);

prio = k;

ttCreatePeriodicTask(taskname,offset,period,prio,code,d

ata);

end
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Code Functions

• Each task or interrupt handler in the user application must

be implemented in a code function

• The code function is called repeatedly by the kernel during

the simulation

– The simulated execution time is returned by the func-

tion

• Three options for the implementation:

– C++ code (fast)

– MATLAB code (medium)

– Simulink block diagram (slow)
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Example of a MATLAB Code Function

function [exectime,data] = my_ctrl(segment,data)

switch segment,

case 1,

data.y = ttAnalogIn(1);

data.u = calculate_output(data.x,data.y);

exectime = 0.002;

case 2,

ttAnalogOut(1,data.u);

data.x = update_state(data.x,data.y);

exectime = 0.004;

case 3,

exectime = -1;

end
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The Wired Network Block

• Supports six common MAC layer

policies:

– CSMA/CD (Ethernet)

– CSMA/AMP (CAN)

– Round Robin (Token bus)

– FDMA

– TDMA

– Switched Ethernet

• Policy-dependent network parame-

ters

• Generates a transmission schedule
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The Wireless Network Block

• Used in basically the same way as

the wired network block

• Supports two common MAC layer

policies:

– 802.11b/g (WLAN)

– 802.15.4 (ZigBee)

• Variable network parameters

• x and y inputs for node locations

• Generates a transmission schedule
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TrueTime Demo: Robot Soccer

• 5+5 mobile robots communicating over a wireless network
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