Systems Engineering/Process Control L3

» Mathematical modeling
» State-space models
» Stability

Reading: Systems Engineering and Process Control: 3.1-3.4
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Process modeling

» Dynamics in processes often described by differential equations
» Two approaches:
1. Mathematical modeling
» Use physical laws (conservation equations etc) to create model
2. Experiments

» Create experiments (e.g., step response), analyze input & output
» FRTO041 System identification

In practice, a combination of both methods is often used
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Mathematical modeling

» Flow balances
» Intensity balances
» Constitutive relations
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Flow balances

» volume flow [m?/s]

Change in
stored volume| = [Inflow] — [Outflow]

per time unit

» material flow (mass balance) [mol/s]

accumulated particles particles particles

l Change in number of] [ Inflow of [Outf/ow of]
per time unit



Flow balances

» energy flow [W]

stored energy

Change in
= [Power in] — [Power out]
per time unit

» current flow [A]

Sum current| _ | Sum current
to node — | from node
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Intensity balances

» momentum balance [N]

Change in
momentum

er time unit forces forces

_ [Driving] _ [Braking]

» voltage balance [V]

[Sum voltage around circuit| = 0
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Constitutional relations

v

v

v

v

Ideal gas law
nR
=—T
P="y
Torricelli’s law
v=1+1/2gh
Energy in heated liquid
W =C,pVT

Ohm’s law
u=Ri



Typical balance equations for chemical processes

Total mass balance:

dpv => " pigi— Y pi

i=all i=all
inlets outlets

Mass balance for component ;:

ch Zc]lql_ ch,iQi+er

i=all i=all
inlets outlets

Total energy balance:

—:ZPiViHi_ ZiniHi+ Z Qr+W

i=all i=all k=all phase
inlets outlets boundaries

(all follow from physical conservation laws)



Example: CSTR with exothermic reaction

Qins CAins T’l

T.

» Exothermic reaction A — B, r = kge E/ET¢
» Cooling coil with temperature T,
» Perfect stirring, constant density p
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Example: CSTR with exothermic reaction

Total mass balance, balance for comp. A, and total energy balance:

awv _
dt =4qin —¢q
dc
d: — qin (CA n— CA) k()e_E/RTCA
T, —T)+ ~——""0~E/ T.—T
dt ( )+ pcp ¢ cat VpCp( )

after simplifications

Nonlinear third order model

State variables: V,ca, T

Possible inputs: qin, ¢, ca,in, Tin, Tt

Parameters (constants): p, C,, (—AH,), ko, E, R, U, A

v

v

v

v
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Example: Mechanical system

v

v

v

v

Mass m with position z
External force: F

Spring force: Fr = —kz
Damper force: Fy = —dz
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Example: Mechanical system

Momentum balance:
mz=F —kz—d:z

Introducev =2 =

Linear second order model

v

State variables v, z
Input: F
Parameters (constants): m, &, d

v

v

v
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State-space form

X
u y
— System |———
In general, x, u and y are vectors:
X1 u1 Y1
Xn Um Yp

» n = number of state variables = system order
» m = number of inputs
» p = number of outputs (measurements)
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State-space form

» x is called system state (state)
» it contains values of all accumulated quantities in the system
» (it represents the system “memory”)
» The dynamics are described by n first order differential
equations:

d

% = fl(xl) vy, Xp, UL, oe e, um)
dx,
dt

=fn(le cees Xpy, UL, oe e um)
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State-space form

» Outputs described by p algebraic equations (not always stated):

Y1 = gl(xl) cees Xp, UL, - e um)

yp = gp(xl, cees Xpy, ULy o ety um)

» System can be written in vector form as:

% = f(x, u) (state equation)
y=g(xu) (measurement equation)

» (f and g can be nonlinear functions)
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State-space form for linear systems

» A system is linear if all f; and g; are linear functions

» Example:
% =aiix1 +
dt —_— 11X1 coe
dx, +
— = Qp1X
dt nlil

y1=011x1+...

Yp = Cp1X1 +...

+ anx, + b11u1 +...

+ apnxn + bpiur +. ..

+ C1pXn + d11u1 +...

+ cpnXn +dpiur + ...

+ blmum

+ bpmlim

+ dlmum

+ dpmum
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State space form for linear systems

In matrix form:

d ,
d_jtc — Ax + Bu (state equation)

y=Cx+ Du (measurement equation)

» x and u are deviations from equilibrium point
> (x,u) = (0,0) is always in equilibrium (why?)
» D is called system direct term (often 0 for real processes)

Mini problem: What dimensions does matrices A, B, C and D have?
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Example: Mechanical system

» State vector: x = [2]
» We control u = F and measure y = z

» The model on state space form with matrices:

k

dx -4 _k L

ki m m m

di [1 0]x+[0]u
A B

y=wx+£)lu

o
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Solution of the linear state equation

X
u y
System
» state-space model of system:
dx .
Fr Ax + Bu (state equation)
y=Cx+ Du (measurement equation)

» How does x (and y) depend on input u and initial state x(0)?
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Solution of state equation — scalar case

» System with one state variable and one input:

dx(t)
dt

= ax(t) + bu(t)

» Solution: ,
x(t) = e x(0) +f e pu(r)dr
0

» Example: Constant input u(¢) = up and a # 0:
at b at
x(t) = e”x(0) + a(e —1uo

x(t) limited if a < 0
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Simulation with »(¢) = 1and x(0) =0

x(t) fora=-1,b=10.5,1, 2

oF PSS e ey g g
-7 b=2
7
/ b=1
ir e —
;-7 b=0.5
. 7
/7
0 L
0 5 10
Time
x(t) fora = —0.5, =1, =2, if b/a = —1
1r T == ='—-"~—'—-—'—'—————-
e -~
N 7
7/
/’ /
-/ = -2
.I/ =1
1/ _
; =-0.5
0
0 5 10
Time
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Solution of state equation — general case

» State space model:

» Solution: .
() = eAtx(0) + f A=) By (r) dr
0
where ¢4 is matrix exponential function, defined as

(A1) | (At)?
A= T+ At + TR
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Example: Mechanical system
Recall state-space system:

dx —d _k
el s B HE
Assume:

d=0, F=u=0, Mo):[i%]:[?], m=k=1

i.e., no damping, no external force
Gives state-space system and exponential matrix:

dx _ (0 -1 At [cost —sint
at (1 o )® ¢ T |sint cost
—_————

A

O3

Solution:

_ At _ [cost —sint 0) (-—sint
x(t) = e™x(0) = [sint cost ] [1] - [ cost ]
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Simulation of mechanical system
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Eigenvalues

v

v

v

v

Eigenvalues of A given by n roots to characteristic equation:
det(Al —A)=0
det(AI — A) = P(A) is called characteristic polynomial

Eigenvalues can be complex

Multiplicity of eigenvalue = nbr of eigenvalues with same value
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Eigenvalues

» Suppose A is diagonal with eigenvalues Ay, ..., 4,:

A 0 O ... 0

0 A 0 ... 0

A= . ) )

0 0 0 ... A,

» Then
et 0 0 ... 0
0 e 0 ... 0
eAt:

0 0 0 ... eMt

» Every eigenvalue 4; gives a term e”* in solution
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Eigenvalues

» Assume that A is a general matrix

» Every eigenvalue of A gives aterm P,,,_i(t)e** in eA* where

» P,,,_1(¢) is a polynomial in ¢ of order at most m; — 1
» m; is the multiplicity of the eigenvalue

» Example:
» A matrix [—1 1 ]

» Eigenvalues:

» Exponential matrix:
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Stability for linear systems

» Stability is a system property — does not depend on input
» Can therefore study the uncontrolled system:

dx
T _ A
dr

» Solution:
x(t) = eA'x(0)
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Stability notions

Asymptotic stability: x(¢) — 0 as ¢t — oo for all initial states
Stability: x(¢) limited as ¢t — oo for all initial states

Instability: x(¢) unlimited as ¢ — oo for some initial state

(Marginally stable: Stable but not asymptotically stable system)
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Example

Asymptotically stable systems:

» Water tank with hole in the bottom
» Temperature in oven
» Speedin acar

(Marginally) Stable systems:

» Water tank without hole in the bottom
» Mass-damper-spring system without damping
» Distance covered in a car

Unstable systems:

» Inverted pendulum
» Segway
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Stability in the scalar case

» State-space model and solution:

dx(t
O _ aue), x(t) = e®x(0)
dt
» Solution plots for different a:
a<0 a=0 a>0
2 2 2
w1 \\ 21 81
0 0 0
0 0.5 1 0 0.5 1 0 05 1

t t t

» asymptotically stable if a < 0
» stable if a <0

» unstable ifa >0
31/36



Stability in the general case

» Eigenvalues 4; to A-matrix decides stability

» Alinear system is:
» Asymptotically stable if all Re(4;) < 0
» Unstable if some Re(4;) > 0
» Stable if all Re(4;) < 0 and possible pure imaginary eigenvalues
have multiplicity 1
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Routh—Hurwitz stability criteria

Second order systems:
» 2nd order characteristic polynomial (for 2 x 2-matrix A):
det(Al — A) = P(A) = A2+ p1A+po
» All roots in left half-plane (all Re(4;) < 0) iff p; > 0and ps >0
Third order systems:
» 3rd order characteristic polynomial (for 3 x 3-matrix A):
det(Al — A) = P(A) = A3 + p1A2 + p2A +p3

» All roots in left half-plane iff p; > 0, ps > 0, p3 > 0 and
b1p2 > ps3.
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Example: Mechanical system

» State-space model:
dx _d _k 1
a7 ¢)e (5

y = (0 1] x
» Characteristic equation:
a k
det(Al — A) = "Hm w2y @ik

-1 A m m

» Suppose m, k, d > 0: Asymptotically stable
» Suppose m, k > 0, d = 0: Eigenvalues

ﬂLQ = :Ei\/ E
m

stable (but not asymptotically stable)
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Simulation of mechanical system

m=k=d=1
1
— z
- -
0.5
0 T = —_— x
\ /
05\ _
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Linear systems on state-space form in MATLAB

o©

Define system matrices

A= [12; 3 1471;
B = [0; 11;

cC = [1 0];

D = 0;

o\°

Create state-space model
sys = ss(A,B,C,D);

[}

% Compute eigenvalues to A matrix
eig (a)

% Simulate system w/o input from initial state x0
initial (sys, x0)
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