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Complex numbers

1.

a. Re(z) = −2, Im(z) = 3. Note that the imaginary part is not 3i.

b. See Figure 1.
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c. See Figur 2. The magnitude pzp = r is the distance to the origin, and the
argument arg(z) = φ is the angle to the positive real axis.

d. The magnitude pzp: From Figure 2, we note that Pythagoras’ Theorem can
be applied:

pzp =
√

(Re(z))2 + (Im(z))2

This formula can be applied to compute the magnitude of any complex num-

bers. In our case Re(z) = −1 and Im(z) = 1. Hence pzp =
√

(−1)2 + 12 =
√
2.
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The Argument arg(z): Here we compute the argument in radians. The angle
φ i Figure 2 can be computed as φ = π−v, where v is the angle in the triangle
shown in Figure 3. We have

tan(v) = Im(z)
pRe(z)p =[ v = arctan

(

Im(z)
pRe(z)p

)

In our case v = arctan(1/1) = arctan 1 = π /4, and thus φ = π − v =
π −π /4 = 3π /4.

e. A number z can be expressed in polar coordinates as z = pzpearg(z)i. From
the previous problem we know that pzp =

√
2, arg(z) = 3π /4. Therefore

z = −1+ i =
√
2e3π i/4.

f. We can express z as

z = 3eπ i = 3(cos(π ) + i sin(π )) = 3(−1+ i ⋅ 0) = −3

So Re(z) = −3, Im(z) = 0.

2.

a.

peω ip = p cos(ω ) + i sin(ω )p =
√

cos2(ω ) + sin2(ω ) =
√
1 = 1

Its very useful to know this result by heart.

b. The number eω i is a complex number expressed in polar coordinates with

magnitude 1 and argument ω . Therefore

arg(eω i) = ω

c.

p − 2(−1+ 2i)(−4− 3i)p = p − 2p ⋅ p − 1+ 2ip ⋅ p − 4− 3ip =

2 ⋅

√

(−1)2 + 22 ⋅

√

(−4)2 + (−3)2 = 2
√
5
√
25 = 10

√
5 ( 22.36
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d. Arguments are subject to the same rules as logarithms, e.g.

arg(xy2/z) = arg(x) + 2arg(y) − arg(z)

In our case

arg(−2(−1+ 2i)(−4− 3i)) = arg(−2) + arg(−1+ 2i) + arg(−4− 3i) =
π + (π + arctan(2/ − 1)) + (π + arctan(−3/ − 4)) =

3π + arctan(−2) + arctan(3/4) ( 8.96

e.
∣

∣

∣

∣

2e−5i(2− i)2
2i+ 3

∣

∣

∣

∣

= 2pe
−5ipp2 − ip2
p2i+ 3p = 2 ⋅ 1(22 + (−1)2)√

22 + 32
= 10√

13
( 2.77

f.

arg

(

2e−5i(2− i)2
2i+ 3

)

= arg(2) + arg(e−5i) + 2arg(2− i) − arg(2i+ 3) =

0+ (−5) + 2arctan(−1/2) − arctan(2/3) ( −3.51

Second order polynomial equations

3. The solution to x2 + px+ q = 0, where p and q are constants, is given by

x1,2 = −
p

2
±

√

(p

2

)2

− q

In our case p = −1, q= 4, and thus

x1,2 = −
−1
2
±

√

(−1
2

)2

− 4 = 1
2
±

√

−15
4
= 1
2
± i
√
15

2
( 0.5± 1.94i

4. In order to use the formula above, we divide both sides by 3.

x2 + 2
3
x + 1
3
= 0

According to the formula (p = 2/3, q = 1/3) we have

x1,2 = −
1

3
±

√

1

9
− 1
3
= −1
3
± i
√
2

3
( −0.33± 0.47i

Partial fractions expansion

5. Suppose that f (x) can be expressed as

f (x) = 1

(x + 1)(x + 2) =
a

x + 1 +
b

x + 2
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We have

f (x) = a

x + 1 +
b

x + 2 =
a(x + 2) + b(x + 1)
(x + 1)(x + 2) = x(a+ b) + 2a+ b(x + 1)(x + 2)

By identification of the parameters, we obtain the following system of equa-

tions

a+ b = 0
2a+ b = 1

The solution is a = 1 and b = −1, and therefore

f (x) = 1

(x + 1)(x + 2) =
1

x + 1 −
1

x + 2

6. Proceeding as we did above, we have:

f (x) = 3x + 11
(x + 1)(x − 3)(x + 2) =

a

x + 1 +
b

x − 3 +
c

x + 2

= a(x − 3)(x + 2) + b(x + 1)(x + 2) + c(x + 1)(x − 3)(x + 1)(x − 3)(x + 2)

= x
2(a+ b+ c) + x(−a+ 3b− 2c) − 6a+ 2b− 3c

(x + 1)(x − 3)(x + 2)

We now need to solve

a+ b+ c = 0
−a+ 3b− 2c = 3
−6a+ 2b− 3c = 11

The solution is a = −2, b = 1, c = 1, and therefore

f (x) = 3+ 11x
(x + 1)(x − 3)(x + 2) = −

2

x + 1 +
1

x − 3 +
1

x + 2

7. Start by determining the roots of the polynomial in the denominator

x2 + 3x + 2 = 0 =[ x1 = −1, x2 = −2

We can express f (x) as

f (x) = 2

x2 + 3x + 2 =
2

(x + 1)(x + 2)

Proceeding as we did above results in

f (x) = 2

(x + 1)(x + 2) =
a

x + 1 +
b

x + 2 =
a(x + 2) + b(x + 1)
(x + 1)(x + 2)

= x(a+ b) + 2a+ b(x + 1)(x + 2)
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The solution to

a+ b = 0
2a+ b = 2

is a = 2, b = −2. Therefore

f (x) = 2

x2 + 3x + 2 =
2

x + 1 −
2

x + 2

Matrices

8.

a.

A ⋅ B =








−1 ⋅ 1+ 0 ⋅ 4 −1 ⋅−2+ 0 ⋅−5
3 ⋅ 1+ 2 ⋅ 4 3 ⋅−2+ 2 ⋅−5








=









−1 2

11 −16









b.

A ⋅ B =








−1 ⋅ 1 −1 ⋅ 2

3 ⋅ 1 3 ⋅ 2








=









−1 −2
3 6









c.

A ⋅ B =


−1 ⋅ 4+ 0 ⋅−5


 = −4

9.

det(A) = −2 ⋅ 0− 4 ⋅ 1 = −4
The formula for determining the determinant of a 2$2 matrix can be found
in the formula sheet.

10.

A−1 = 1

det(A)









4 −2
−3 1








= 1

1 ⋅ 4− 2 ⋅ 3









4 −2
−3 1








=









−2 1
3
2

−1
2









The formula for inverting a 2$2 matrix can be found in the formula sheet.

11.

a. The eigenvalus λ of a matrix A satisfy the following equation (this equation
is also part of the formula sheet)

det(λ I − A) = 0

In our case

det(λ I − A) = det
(

λ









1 0

0 1








−









1 2

3 4









)

= det
(







λ − 1 −2
−3 λ − 4









)

= (λ − 1)(λ − 4) − (−2) ⋅ (−3) = λ2 − 5λ − 2 = 0

By solving this second order polynomial equation, we obtain

λ = 5
2
±

√

(

5

2

)2

+ 2 =[ λ1 = −0.37, λ2 = 5.37
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b. Here A is diagonal and the eigenvalues are given by the diagonal elements,

λ1 = −1, λ2 = 4, λ3 = −2.

12.

a. The system of equations can be expressed as









5

2








x1 +









3

−1








x2 =









7

0









which is the same as









5 3

2 −1

















x1

x2








=









7

0









b. The system of equations can be expressed as

















1 0 1

0 1 −1
1 1 0

































x1

x2

x3

















=

















0

1

2

















Taylor series expansion

13.

a. A function f (x) can be exapnded in a Taylor series around a point a. I.e.
f (x) can be expressed as

f (x) = f (a) + 1
1!

d f

dx
(a)(x − a) + 1

2!

d2 f

dx2
(x − a)2 + . . .

We can then obtain an approximation of f (x) around x = a by only keeping
some of the first few terms. The approximation is good provided that x stays

sufficiently close to a.

Our task was to expand f (x) up to first order terms, i.e. the two first terms
in the Taylor series. We want to expand f (x) around the point x = 2, i.e.
a = 2.
We have

f (x) ( f (2) + d f
dx
(2)(x − 2)

where

f (2) = 4, d f
dx

= 2x, d f
dx
(2) = 4

The result is

f (x) ( 4+ 4(x − 2) = 4(x − 1)
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b. Here f (x,u) is a function of two varaibles and the Taylor series expansion
at x = a, u = b is given by

f (x,u) = f (a, b) + 1
1!

� f
�x (a, b)(x − a) +

1

1!

� f
�u (a, b)(u − b)+

+ 1
2!

�2 f
�x2 (a, b)(x − a)

2 + 1
2!

�2 f
�x�u(a, b)(x − a)(u− b) +

1

2!

�2 f
�u2 (a, b)(u− b)

2 + . . .

Since our task is to expand up to first order terms, we keep the constant

f (a, b), and all terms that contain first order derivatives of f (x,u).
In our case we have

f (x,u) ( f (3,π ) + � f�x (3,π )(x − 3) +
� f
�u (3,π )(u−π )

where

f (3,π ) = 15− 0 = 15, � f
�x = 5

√
3
1

2
x−

1
2 = 5
2

√

3

x
,
� f
�x (3,π ) =

5

2
= 2.5,

� f
�u = cos(u)

� f
�u (3,π ) = −1

The result is

f (x,u) ( 15+ 2.5(x − 3) − 1(u− π ) ( 10.64− 2.5x − u
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