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Complex numbers
1.

a. Re(z) = —2, Im(z) = 3. Note that the imaginary part is not 3i.

b. See Figure 1.
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c. See Figur 2. The magnitude |z| = r is the distance to the origin, and the
argument arg(z) = ¢ is the angle to the positive real axis.

d. The magnitude |z|: From Figure 2, we note that Pythagoras’ Theorem can
be applied:

2] = \/ (Re(2))? + (Im(2))?

This formula can be applied to compute the magnitude of any complex num-

bers. In our case Re(z) = —1 and Im(z) = 1. Hence |2| = \/(—1)2 + 12 = V2.



Figur 3

The Argument arg(z): Here we compute the argument in radians. The angle
¢ i Figure 2 can be computed as ¢ = 7—v, where v is the angle in the triangle
shown in Figure 3. We have
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tan(v) = = v = arctan <

o)

In our case v = arctan(1/1) = arctanl = 7 /4, and thus ¢ = 7 —v =
r—n/4=3x/4.

. A number z can be expressed in polar coordinates as z = |z|e*"8(3)', From
the previous problem we know that |z| = V2, arg(z) = 37 /4. Therefore
z=—1+i= 2/

. We can express z as

z=3e™ = 3(cos(n) +isin(r)) =3(-1+4+i-0) = -3

So Re(z) = —3, Im(z) = 0.

|e?!| = | cos(®) + i sin(w)| = \/cosz(a)) +sin(@) =vV1=1
Its very useful to know this result by heart.

. The number e®* is a complex number expressed in polar coordinates with

magnitude 1 and argument @. Therefore

arg(e”) = o

| —2(—1+42i)(—4—3i)| = | —2|- |—1+2i| | —4—3i| =
21/(~1)2 422 /(~4)2 + (-3)2 = 2525 = 10v/5 ~ 22.36




d. Arguments are subject to the same rules as logarithms, e.g.
arg(xy?/z) = arg(x) + 2arg(y) — arg(z)
In our case

arg(—2(—1 + 2i)(—4 — 3i)) = arg(—2) + arg(—1 + 2i) + arg(—4 — 3i) =
7w+ (7 + arctan(2/ — 1)) + (7 + arctan(—3/ — 4)) =
37 + arctan(—2) + arctan(3/4) ~ 8.96
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2e (2 — l)z —5i . .
arg 217—'_3 = arg(Z) + arg(e ) + 2 arg(z — l) — aI‘g(Zl + 3) =

0 + (—5) + 2arctan(—1/2) — arctan(2/3) ~ —3.51
Second order polynomial equations

The solution to x? 4+ px + ¢ = 0, where p and q are constants, is given by

X12 = —§ +
In our case p = —1, ¢ = 4, and thus
-1 -1 1 15 1 \/ 15 .

In order to use the formula above, we divide both sides by 3.
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According to the formula (p = 2/3, ¢ = 1/3) we have
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Partial fractions expansion

Suppose that f(x) can be expressed as

1 a b

fx) = (x+ 1)(x +2) =x+1+x+2




We have

a b a(x+2)+b(x+1) x(a+b)+2a+b

) = it a2~ GrDE+2 ~ G lE+2)

By identification of the parameters, we obtain the following system of equa-
tions

a+b=0
20 +b=1
The solution is ¢ = 1 and b = —1, and therefore
1 1 1

) = i+ s+l x+2

Proceeding as we did above, we have:

3x+ 11 a b c
flx) = (x+1)(x—3)(x+2) =x+1+x—3+x+2
_ax=3)(x+2)+b(x+1)(x+2)+c(x+1)(x—3)
B (x+1)(x—3)(x+2)

_ x%(a+b+c)+x(—a+3b—2c)—6a+2b—3c
B (x+1)(x—3)(x+2)

We now need to solve

a+b+c=0
—a+3b—2c=3
—6a+2b—3c=11

The solution is a = —2, b =1, ¢ = 1, and therefore
flx) = 3+ 11x _ 2 + 1 + 1
S (x+D(x—-38)(x+2)  x+1 x—3 x+2

Start by determining the roots of the polynomial in the denominator
2 4+8x+2=0 = x;=—1, x9=—-2

We can express f(x) as

2 2
x2+3x+2 (x+1)(x+2)

fx) =

Proceeding as we did above results in

2 __® b a(x+2)+b(x+1)
(x+1)(x+2) x+1 x+2  (x+1)(x+2)
_x(@+b)+2a+b
o (x+ D) (x+2)

flx) =




The solution to

a+b=0
2a +b =2
is a = 2, b = —2. Therefore
2 2 2
flx) = x2+3x+2 x+1 x+2
Matrices
8.
* 1-140-4 —1-—2+0-—5 1 2
3-1+2-4 3-—2+2--5 11 -16
b.
-1-1 -1-2 -1 -2
3-1 3-2 3 6
c.
AB=(-1440--5]) =4
9.
det(A)=—-2-0—-4-1=—-4
The formula for determining the determinant of a 2 x 2 matrix can be found
in the formula sheet.
10.
A_1=1 4—2= 1 4—2=—21
det(A) (-3 1 1-4-2-3 (-3 1 3 -3
The formula for inverting a 2 x 2 matrix can be found in the formula sheet.
11.

a. The eigenvalus A of a matrix A satisfy the following equation (this equation
is also part of the formula sheet)

det(A —A) =0
In our case
det(lI—A):det(/l[(l) 2]—[; i]):det([/l__gl [_24])
=A-1)(A1—-4)—(-2)-(-3)=A2-51—-2=0

By solving this second order polynomial equation, we obtain

5 5\ 2
A=gx\[5) +2 = 1=-037, 12 =537



b. Here A is diagonal and the eigenvalues are given by the diagonal elements,

12.

13.

A=-1, =4, A3 =-2.

. The system of equations can be expressed as

(2)oe () == (5)

which is the same as

. The system of equations can be expressed as

10 1 x1 0
11 0 X3 2

Taylor series expansion

. A function f(x) can be exapnded in a Taylor series around a point a. Le.

f(x) can be expressed as

1df
1! dx

(a)(x —a) + lﬁ(x—a)2+...

f(x) = f(a)+ 2! dx2

We can then obtain an approximation of f(x) around x = a by only keeping
some of the first few terms. The approximation is good provided that x stays
sufficiently close to a.

Our task was to expand f(x) up to first order terms, i.e. the two first terms
in the Taylor series. We want to expand f(x) around the point x = 2, i.e.
a=2.

We have g
F) ~ f@) + L @) —2)
where if df
f2)=4, =2 - (2)=4

The result is
fx) ~4+4(x—2)=4(x—1)



b. Here f(x,u) is a function of two varaibles and the Taylor series expansion
at x =a, u = b is given by

Fleu) = F(a,b) + 35 20 (a,b) (x —a) + 7 o (@, b)(u — b)+
1Pf 1 8f 1 Pf

+2'8 5 (a,0)(x _a)2+2_!8x8 (a, b)(x—a)(u—b)+2'8 5 (a, b)(u—b)2+...

Since our task is to expand up to first order terms, we keep the constant
f(a,b), and all terms that contain first order derivatives of f(x,u).

In our case we have

flou) ~ F8,7)+ 5L (3,7)(x —3) + 5L (3,7)(u —7)
where
_ _15 U _gygli 5 )3 of 5_
f(8,7) =15—0 = 15, ax_5f2x =5\ 537 =5=25
of of
8—u=cos(u) 8—u(3,7r)=—1

The result is

flx,u) ~15+25(x —3) — 1(u — ) ~ 10.64 —2.5x —u



