Introduction, The PID Controller, State Space Models

Automatic Control, Basic Course, Lecture 1

November 7, 2017

Lund University, Department of Automatic Control

Content

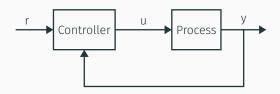
1. Introduction

2. The PID Controller

3. State Space Models

Introduction

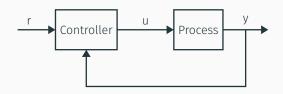
The Simple Feedback Loop



- · Reference value r
- · Control signal u
- Measured signal/output y

The problem/purpose: Design a controller such that the output follows the reference signal as good as possible

The Simple Feedback Loop

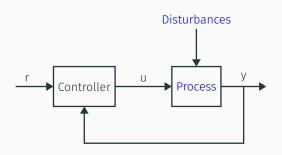


- · Reference value r
- · Control signal u
- Measured signal/output y

The problem/purpose: Design a controller such that the output follows the reference signal as good as possible

Note on terminology: Process, Controlled system, Plant etc...

The Feedback Loop



- · Reference value r
- · Control signal u
- Measured signal/output y

The problem/purpose: Design a controller such that the output follows the reference signal as good as possible despite disturbances and uncertainties in process.

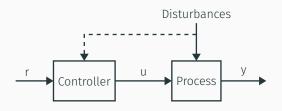
- · Reference value Desired temperature
- Control signal E.g., power to the AC, amount of hot water to the radiators
- · Measured value The temperature in the room

- · Reference value Desired speed
- · Control signal Amount of gasoline to the engine
- · Measured value The speed of the car

- · Reference value Number of bacterias
- Control signal "Food" (sugar and O₂)
- · Measured value E.g., pH or oxygen level in the tank

Feedforward

Some systems can operate well without feedback, i.e., in open loop.



Examples of open loop systems?

Feedforward vs. Feedback

Benefits with feedback:

- · Stabilize unstable systems
- · The speed of the system can be increased
- Less accurate model of the process is needed
- · Disturbances can be compensated
- WARNING: Stable systems might become unstable with feedback

Feedforward vs. Feedback

Benefits with feedback:

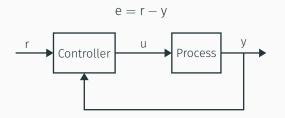
- · Stabilize unstable systems
- The speed of the system can be increased
- · Less accurate model of the process is needed
- · Disturbances can be compensated
- WARNING: Stable systems might become unstable with feedback

Feedforward and feedback are **complementary** approaches, and a good controller typically **uses both**.

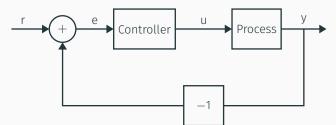
The PID Controller

The Error

The input to the controller will be the error, i.e., the difference between the reference value and the measured value.

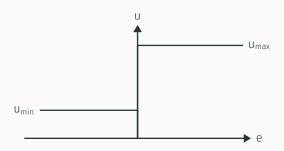


New block scheme:



On/Off Controller

$$u = \begin{cases} u_{max} & \text{if } e > 0 \\ u_{min} & \text{if } e < 0 \end{cases}$$



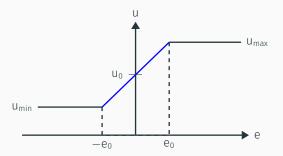
Usually not a good controller. Why?

The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

$$u = \begin{cases} u_{max} & \text{if } e > e_0 \\ u_0 + Ke & \text{if } -e_0 \leq e \leq e_0 \\ u_{min} & \text{if } e < -e_0 \end{cases}$$



P-part comes from proportional (here affine) to the error e.

The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

$$u = \begin{cases} u_{max} & \text{if } e > e_0 \\ u_0 + Ke & \text{if } -e_0 \leq e \leq e_0 \\ u_{min} & \text{if } e < -e_0 \end{cases}$$

The control error

$$e=\frac{u-u_0}{K}$$

To have e = 0 at stationarity, either:

- $u_0 = u$
- · $K = \infty$

The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

$$u = \begin{cases} u_{max} & \text{if } e > e_0 \\ u_0 + Ke & \text{if } -e_0 \leq e \leq e_0 \\ u_{min} & \text{if } e < -e_0 \end{cases}$$

The control error

$$e=\frac{u-u_0}{K}$$

To have e = 0 at stationarity, either:

- $u_0 = u$ (What if u varies?)
- $K = \infty$ (On/off control)

The I Part

Idea: Adjust u₀ automatically to become u.

PI-controller:

$$u(t) = K\left(\frac{1}{T_i}\int^t e(\tau)d\tau + e\right)$$

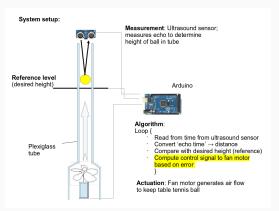
Compared to the P-controller, now

$$u_0(t) = \frac{K}{T_i} \int^t e(\tau) d\tau$$

At stationary e = 0 if and only if r = y.

PI controller achieves what we want, if performance requirements are not extensive.

Example of integral action needed — mini-problem (5 min)



- (a) Argue why there will be a stationary value if we just use P-control; i.e., $u(t) = K \cdot (h_{ref} h)$?
- (b) How will the stationary value change with the value of the gain K?
- (c) What happens if we add integral action with very small gain $\frac{K}{T_i}$? Sketch the behaviour.

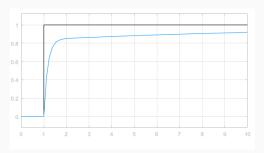
Answer mini-problem

Note: This is not a strict answer and you need to make reasonable assumptions about the process yourself for this to hold.

- (a) Argue why there will be a stationary value if we just use P-control; i.e., $u(t) = K \cdot (h_{ref} h)?$ If $h = h_{ref}$ the control signal $u(t) = K \cdot (h_{ref} h) = 0$ and the motor shuts off/fan stops spinning and the ball will fall. The process will finally settle to an equilibrium with a positive stationary error $e = h_{ref} h$ such that the corresponding control signal will keep the ball at a fixed error (e) from the reference.
- (b) How will the stationary value change with the value of the gain K? The control signal to the fan motor $u=K\cdot e$ is the product of the gain and the error; for a higher gain K you can reach stationarity with a smaller stationary error e.

Answer mini-problem, cont'd

(c) What happens if we add integral action with very small gain $\frac{K}{T_i}$? Sketch the behaviour.



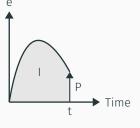
See also separate simulink example/demo.

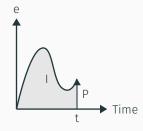
The D Part

Idea: Speed up the PI-controller by "looking ahead"/"predicting future".

PID-controller:

$$u = K \left(e + \frac{1}{T_i} \int^t e(\tau) \mathrm{d}\tau + T_d \frac{\mathrm{d}e}{\mathrm{d}t} \right)$$





Same P- and I-part in both cases, but very different behavior of error. The derivative of e contains a lot of information to utilize.

- · P acts on the current error,
- · I acts on the past error,
- · D acts on the "future"/predicted error.

Consider a linear differential equation of order \mathbf{n}

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \ldots + b_{n}u$$

For <u>linear</u> systems the superposition principle holds:

$$u=u_1\Longrightarrow y=y_1 \text{ and}$$

$$u=u_2\Longrightarrow y=y_2 \text{ implies}$$

$$u=c_1\cdot u_1+c_2\cdot u_2\Longrightarrow y=c_1\cdot y_1+c_2\cdot y_2$$

and vice versa; We can consider the output from a sum of signals by considering the influence from each component.

Consider a linear differential equation of order ${\bf n}$

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \ldots + b_{n}u$$

For <u>linear</u> systems the superposition principle holds:

$$u=u_1\Longrightarrow y=y_1 \text{ and}$$

$$u=u_2\Longrightarrow y=y_2 \text{ implies}$$

$$u=c_1\cdot u_1+c_2\cdot u_2\Longrightarrow y=c_1\cdot y_1+c_2\cdot y_2$$

and vice versa; We can consider the output from a sum of signals by considering the influence from each component.

Q: Why is this not true for nonlinear systems? Example?

Consider a linear differential equation of order n

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \ldots + b_{n}u$$

Consider a linear differential equation of order n

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \ldots + b_{n}u$$

An **altenative** to <u>ONE</u> differential quation of <u>order</u> nth is to write it as a system of n **coupled differential equations**, **each or order one**.

Consider a linear differential equation of order n

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \ldots + b_{n}u$$

An altenative to <u>ONE</u> differential quation of <u>order</u> nth is to write it as a system of n coupled differential equations, each or order one.

State space representation:

$$\begin{cases} \dot{x}_1 &= f_1(x_1,\, x_2,\, ...x_n,\, u) \\ \dot{x}_2 &= f_2(x_1,\, x_2,\, ...x_n,\, u) \\ &... \\ \dot{x}_n &= f_n(x_1,\, x_2,\, ...x_n,\, u) \\ y &= g(x_1,\, x_2,\, ...x_n,\, u) \end{cases}$$

The last row is a (linear) equation relating the **states** (x), the input u, and the output y.

Consider a linear differential equation of order n

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \ldots + b_{n}u$$

An **altenative** to <u>ONE</u> differential quation of <u>order</u> nth is to write it as a system of n **coupled differential equations**, **each or order one**.

State space representation:

$$\begin{cases} \dot{x}_1 &= a_{11}x_1 + ... + a_{1n}x_n + b_1u \\ \dot{x}_2 &= a_{21}x_1 + ... + a_{2n}x_n + b_2u \\ ... \\ \dot{x}_n &= a_{n1}x_1 + ... + a_{nn}x_n + b_nu \\ y &= c_1x_1 + c_2x_2 + ... + c_nx_2 + du \end{cases} y = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ a_{21} & a_{22} & a_{2n} \\ a_{21} & a_{22} &$$

Consider a linear differential equation of order n

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \ldots + b_{n}u$$

An **altenative** to <u>ONE</u> differential quation of <u>order</u> nth is to write it as a system of n **coupled differential equations**, **each or order one**.

State space representation:

$$\begin{cases} \dot{x}_1 &= a_{11}x_1 + ... + a_{1n}x_n + b_1u \\ \dot{x}_2 &= a_{21}x_1 + ... + a_{2n}x_n + b_2u \\ & ... \\ \dot{x}_n &= a_{n1}x_1 + ... + a_{nn}x_n + b_nu \\ y &= c_1x_1 + c_2x_2 + ... + c_nx_2 + du \end{cases} y = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ a_{21} & a_{22} & a_{2n} \\ a_{n1} & a_{n2} & a_{1nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_n \end{bmatrix} u$$

NOTE: Only states (x) and inputs (u) are allowed on the right hand side in Eq.-system above (in f and g) for it to be called a state-space representation!

Linear dynamics can be described in the following form

$$\dot{x} = Ax + Bu$$

$$y = Cx (+Du)$$

Here $x \in \mathbb{R}^n$ is a vector with states. States can have a physical "interpretation", but not necessary.

In this course $u \in \mathbb{R}$ and $y \in \mathbb{R}$ will be scalars.

(For MIMO systems, see Multivariable Control (FRTN10))

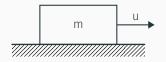
Example

Example

The position of a mass m controlled by a force u is described by

$$m\ddot{x} = u$$

where x is the position of the mass.



Introduce the states $x_1 = \dot{x}$ and $x_2 = x$ and write the system on state space form. Let the position be the output.

Dynamical Systems

	Continous Time	Discrete Time (sampled)
Linear	This course	Real-Time Systems (FRTN01)
Nonlinear	Nonlinear Control and Servo Systems (FRTN05)	

Next lecture: Nonlinear dynamics can be linearized.