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Recap



What is control?

Making a measured or estimated signal follow a desired reference.

• Position of 3D-printer head.

• Blood glucose level in diabetes patient.

• Fuel-to-air ratio in combustion engine1.

• Temperature in building, oven, 3D-printer.

• Amount of force applied by the scalpel when a surgical robot

operates on a patients brain.

1If VW had hired better control engineers, they might not have had to cheat during

the emission tests, who knows?
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What is feedback?

• Acting in response to a measurement
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What is feedback?

Feedback is essentially the act of observing something and acting in response

to it. Humans rely heavily on feedback for most things we do. Imagine the

di�culties that would arise if we had no senses, no eyes, ears or sense of touch.



Why do we need feedback?

To reduce the influence of Uncertainty

• There are always unknown disturbances

• There are always model errors

• Get linear behavior from nonlinear components.
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Why do we need feedback?

Feedback is essential to reduce the influence of disturbances and model errors.

There is typically uncertainty related to both phenomena and without feedback,

there would be no knowledge of the fact that something is wrong; there is a

control error.

You probably do not own many electrical gadgets that do not involve feedback.

Feedback is the essential principle that allows for linear amplifiers from

nonlinear components, e.g., transistors.



Where does the process model come from?

• Physics often lead to di↵erential equations ẏ = �ay + bu.

• Di↵. eqs. can be transformed to a transfer function or a state-space

model sY (s) = �aY (s) + bU(s) , Y (s) =
b

s+ a
U(s).

• Nonlinear models can be linearized.

• Models with known structure but unknown parameters (gray-box

models).

• Generic models with parameters estimated from data (black-box

models), e.g., neural networks.
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Where does the process model come from?

Black-box models are useful if we have no idea how to model the system. We

use a model which is very flexible and used data from experiments to find

parameters of the model that makes the output of the model agree with the

observed data. This is called system identification and is treated in the course

System Identification FRT041

www.control.lth.se/Education/EngineeringProgram/FRT041.html


Why do the poles determine stability?

• A rational transfer function corresponds to a di↵erential equation. If

the poles have positive real part, the solution to the di↵erential

equation blows up.
1

s+ a
$ y(t) ⇠ e�at

• A state-space model is already a di↵erential equation. In the scalar

case, the scalar a is the only eigenvalue of A.
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Why are most systems of lowpass character?

• Most naturally occurring systems are of lowpass character.

• Most systems can store energy, i.e, thermal, kinetic, potential.

• The stored quantity always follows or lags the input.

• Velocity follows force, thermal energy follows power.
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Why are most systems of lowpass character?

Consider the ocean being warmed up by the surrounding air. Thermal energy

will be transfered from the warmer body to the colder body until they are in

equilibrium. During a warm day, the air is hot. The ocean will be warmed up

by the air during the entire time the air is warmer than the ocean. Let’s say

temp peaks at noon and starts decreasing in the afternoon. Even though temp

is decreasing, the air is still hotter than the ocean, which is still increasing in

temp. Not until late in the evening when the air finally gets colder than the

ocean, the ocean temp has its peak, several hours after the peak in temp. This

is typical of a lowpass system. The phase of the output (ocean temp) lags the

input (air temp). If the air temp would vary with a much higher frequency,

there would be no time for the ocean to change in temp and the output would

be more or less constant. This high frequency of variation thus does not pass

through the system, which only lets low frequencies pass.



What is a disturbance? - Examples

• The slope of the road changes.

• Wind blowing on airplane.

• Surrounding temperature changes.

• Diabetes patient eats carbs.

• Hackers are DDOSing the server.

• Someone pushes the robot.
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What is a model error? - Origins

• Linearization of nonlinear process ) gain is wrong everywhere

except for at equilibrium.

• Model estimated from noisy data ) all model parameters deviate

from the true parameters.

• Model is always a simplification of a more complex model.

11



What is a model error? - Origins

• Linearization of nonlinear process ) gain is wrong everywhere

except for at equilibrium.

• Model estimated from noisy data ) all model parameters deviate

from the true parameters.

• Model is always a simplification of a more complex model.

2
0
1
6
-1
2
-1
3

Recap, Intuition, Implementation and a Complete Example

Recap

What is a model error? - Origins

Models are always simplifications. Everything we observe is the outcome of a

vast amount of interactions on the atomic level which we can never hope to

model accurately, let alone simulate.

For example, simple friction models such as the Coulomb model are empirically

derived and easy to use, but careful study shows that friction is an extremely

complicated phenomenon arising due to electric forces between particles.



Why do we need a robust design?

Robust design implies small maximum value of the sensitivity function,

large gain margin and large phase margin.

Once again, uncertainties are the villain.

• The model is wrong. If the gain is wrong, we might run into

instability if we are close to the gain margin.

• If the time constant is wrong, we might not get the desired

dampening of oscillations.

A robust design can tolerate large model errors!
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What is feedforward?

• Feedback requires something to happen before a reaction occurs,

i.e., an error has to arise.

• If a known event is about to occur, and this event is known to

create an error if not cared for, we may use feedforward to negate

the e↵ect of the event.

Example - Diabetes

Eating carbs is known to create a rise in blood glucose. A diabetes patient

(or an automatic glucose controller) may use this knowledge and take

insulin at the same time as the food, eliminating the rise in blood glucose2.

2The patient needs a good model of the blood glucose response from carbs as well as

the response of glucose to insulin for the elimination to be complete.
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What is feedforward?

Humans also rely heavily on feedforward. An action such as throwing a ball

requires a very fast movement, during which the limited bandwidth in the

human motor control system is insu�cient to achieve the desired motion.

Instead, we rely on a carefully tuned internal model of our muscles and

kinematics and make use of feedforward from this model to accomplish the

task. Feedforward models in humans take long time to train, throwing a ball

like a professional probably takes several years of training to master.



Prerequisites for feedforward

For feedforward to be e↵ective:

• Knowledge of the disturbance.

• (Inverse) Model of the dynamics involved. The e↵ect of the

disturbance is determined by the dynamics.
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Prerequisites for feedforward

Feedforward obviously requires accurate knowledge of the disturbance we want

to account for. If we see changes in the reference value as a disturbance, this is

fulfilled. In this case we only need an accurate dynamics (inverse) model to

eliminate the e↵ect of the disturbance. If the disturbance is an auxiliary signal,

we need an accurate measurement of this.

A typical linear model can be written like Y (s) = G(s)U(s). For feedforward,

we require the inverse model U(s) = G

�1(s)Y (s), i.e., a model of the input,

given the output. If we know the output Y we want, the inverse model tells us

what input, or control signal U , to apply to get the desired output.



Implementation



How do we implement a controller?

This lecture

• We work in continuous-time domain, the computer works in discrete

time.

• Continuous-time signals must be sampled by the computer.

• Continuous-time models and controllers must be discretized.

16



How do we implement a controller?

This lecture

• We work in continuous-time domain, the computer works in discrete

time.

• Continuous-time signals must be sampled by the computer.

• Continuous-time models and controllers must be discretized.

2
0
1
6
-1
2
-1
3

Recap, Intuition, Implementation and a Complete Example

Implementation

How do we implement a controller?

The subjects of sampling and discretization are treated in great detail in the

course FRTN01 Real-Time Systems.

http://www.control.lth.se/Education/EngineeringProgram/FRTN01.html


Sampling

• The computer uses an analog-to-digital (AD) converter to measure

the value of a signal y(t) at discrete points in time.

• This typically occurs at uniform intervals, called the sample interval

h.

• The result is a sequence of numbers yk = y(kh).

Figure 1: An example of a sampled signal. The information between the

samples is lost.

17



Aliasing

• The sample frequency fs = 1/h determines the highest frequency we

can reconstruct.

• The Nyquist3 frequency fN = fs/2 is the highest frequency we can

reconstruct.

• Frequencies f > fN will be aliased.

• All measured signals must be lowpass filtered before sampling

(anti-alias filter)4.

3Harry Nyquist, Swedish born electronic engineer who made important contributions

to control and communication theory.
4These filters are often implemented with analog circuits.
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Aliasing - Example

Figure 2: An example of a signal sampled with a frequency above and below

the Nyquist frequency.
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the Nyquist frequency.
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Aliasing - Example

Alias: Noun - a false or assumed identity

The term aliasing refers to the fact that a signal with a frequency f > fN

appears as a lower frequency fa in the sampled signal. The lower frequency fa

is called an alias of the original frequency f .

Note how the act of sampling with zero-order-hold introduces a phase lag for

high frequencies (the sampled signal appears to lag slightly behind the original

signal). This topic is treated in FRTN01 Real-Time Systems

http://www.control.lth.se/Education/EngineeringProgram/FRTN01.html


Aliasing - Example

Figure 2: An example of a signal sampled with a frequency above and below

the Nyquist frequency.
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Aliasing - Example

Julia code for aliasing fig

using Plots

t = 0:0.001:5

t1 = 0:0.1:5

t2 = 0:5

f = 1.2

y = sin(2pi*f*t);

y1 = sin(2pi*f*t1);

y2 = sin(2pi*f*t2);

plot(t,y, lab="Original", layout=(2,1), subplot=1, c=:blue)

scatter!(t1,y1, lab="h=0.1", c=:green)

plot!(t1,y1, l=:step, lab="", c=:green, subplot=1)

plot!(t,y, lab="Original", subplot=2, c=:blue)

scatter!(t2,y2, lab="h=1", c=:red, subplot=2)

plot!(t2,y2, l=:step, lab="", c=:red, subplot=2)



Discretization of the PID controller

The PID controller with practical modifications:

U = K

✓
(bR� Y ) +

1

sTi
E � sTd

1 + sTd/N
Y

◆

Implemented in the computer as the sum of three terms5:

uk = Pk + Ik +Dk

5Subindex k refers to the time index. uk = u(kh) = u(t)|t=kh
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Discretization of the PID controller - P

up
k = K(brk � yk)

The P-part does not contain any dynamics and is thus straightforward to

implement

P = K*(b*r - y)
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Discretization of the PID controller - I

ui
k =

K

Ti

Z t=kh

0
e(t)dt

The I-part is an integral, we approximate it with a sum

Naive implementation:

I = K/Ti*h*sum(e[1:k])

Smarter implementation:

I = I + K/Ti*h*e
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Discretization of the PID controller - I

The sample time h enters into the discrete approximation. This is easy to

understand since we approximate the integral, which is the area under a curve,

as the sum of small rectangular areas. The width of each rectangular area is h

and the height is ek.



Discretization of the PID controller - D

D(s) = �K
sTd

1 + sTd/N
Y (s)

ud +
Tdu̇d

N
= �KTdẏ

ud
k +

Td

N

ud
k � ud

k�1

h
= �KTd

yk � yk�1

h

ud
k =

Td

Td +Nh
ud
k�1 �

KTdN

Td +Nh
(yk � yk�1)

Implementation

D = T d/(T d + Nh)*D -(K*T d*N)/(T d + N*h)*(y k - y k1)

y k1 = y k
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Discretization of the PID controller - D

If we define the derivative as

f

0(x) = lim
h!0

f(x+ h)� f(x)
h

we immediately see a way of approximating the derivative; instead of the limit,

let it su�ce with h being small (the sample time). Instead of a derivative
f(x+ h)� f(x)

h

is called a finite di↵erence approximation of the derivative. If

f = y and x = kh, we get the approximation on the previous slide.



How well does the discrete PID perform?

If the sample time is high enough, there is little performance lost in

discretization.

Rule of thumb, allow for ten samples during the dominant time-constant

of the process or closed-loop system, whichever is faster.
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Full PID controller

y = y In . ge t ( ) ;

e = y r e f � y ;

D = ad ∗ D � bd ∗ ( y � yo l d ) ;

v = K∗( beta ∗ y r e f � y ) + I + D;

i f (mode == auto ) u = sa t ( v , umax , umin )

e l s e u = sa t (uman , umax , umin ) ;

uOut . put ( u ) ;

I = I + (K∗h/Ti )∗ e + (h/Tr )∗ ( u � v ) ;

i f ( i n c r ement )

u i n c = 1 ;

e l s e i f ( decrement )

u i n c = �1;

e l s e u i n c = 0 ;

uman = uman + (h/Tm) ∗ u i n c + (h/Tr ) ∗ ( u � uman ) ;

yo l d = y ;

ad and bd are precalculated parameters given by the backward di↵erence

approximation of the D-term.
25
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Full PID controller

The code above is included as an example of how a practical implementation of

a PID controller in JAVA might look. It includes anti-windup, filtering,

saturation, bumpless-transfer and minimizes delay between measurement and

control signal output. All these topics are treated in FRTN01 Real-Time

Systems.

http://www.control.lth.se/Education/EngineeringProgram/FRTN01.html
http://www.control.lth.se/Education/EngineeringProgram/FRTN01.html
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Ball and beam - Contents

• Modeling - Intuition

• Control design - Cascade PID

• Other approaches
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Two transfer functions

Beam angle and ball position measurable. We can divide the model into

two parts.

• GU!� From input voltage to beam angle.

• G�!z From beam angle to ball position.

G�!zGU!�
U

�

z
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GU!�

• A voltage over a motor induces a current through the motor.

• The current gives rise to a torque, ⌧ .

• Newtons second law says ⌧ = J !̇. Compare with linear case:

f = ma.

• Newtons second law implies an integrator between torque and

angular velocity. Due to back-EMF and friction, this pole (*) is

moved into the left half-plane.

• There is one pure integrator between ! and � (�̇ = !).

• Due to an internal controller, the time-constant (*) can be

considered very fast (disregarded). Experiments show that this

assumption is valid up to ! ⇡ 10rad/s.

• We are left with one integrator and an unknown gain
K

s
.
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GU!� - Gain

The gain can be determined experimentally, e.g., through a step-response

experiment or frequency-response experiment.

One such experiment on the real process establishes K ⇡ 4.5
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G�!z

The book derives this model from first principles.

We will derive it from intuition.
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G�!z

• An angle � 6= 0 causes the ball to accelerate � ! z̈.

• Acceleration is proportional to sin�, for small �, sin� ⇡ �

• � ⇠ z̈
L�! �(s) ⇠ s2Z(s)

• We can therefore conclude Z(s) =
K

s2
�(s) for some gain K.

• In lecture notes, K is almost derived from first principles. They still

lack the conversion factor between measured voltage and position !
have to make an experiment.

• One could equally well determine the entire model from the same

experiment, with the simple reasoning above.
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G�!z - Gain

Z(s) =
K

s2
�(s) The gain K is determined from an experiment, K ⇡ 10.

The experiment further shows that the model is valid up to about

! ⇡ 5rad/s
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Full model

The full model is given by

Z(s) = G�!zGU!�U(s) (1)

Z(s) =
10

s2
· 4.5

s
U(s) (2)

Z(s) =
45

s3
U(s) (3)

(4)

The full model is thus a triple integrator, phase is -270°everywhere!

Figure 3: Bode plot for the process
34



Model limitations

Important to keep in mind!

• Ball jumps if acceleration > 9.8

• Centrifugal forces not considered

• Model validity ranges ! < 10rad/s, ! < 5rad/s
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Control design - Methodology

In practice, one typically chooses the methodology one is comfortable

with.

• In this case, phase is -270°everywhere.

• PID controller can only lift the phase by < 90°.

• Something more sophisticated is needed.
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Cascaded PID

Since we have a measurement of the beam angle, we can design a

controller for the beam angle.

G�!zGU!�GR2

P
GR1

Prz r�
U

�

z

�1

�1

This controller will lift the phase for low frequencies by 90°!
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Angle controller

The process is given by GU!� =
4.5

s
A simple P-controller GR2 = K2 will do the trick!

G2 =
4.5K2

s+ 4.5K2
=

1

1 + sT2

We choose T2 with the model limitation in mind!

• Model GU!� is valid up to ! ⇡ 10rad/s.

• Choose !c = 10 rad/s

) K2 = 10/4.5 ⇡ 2.2
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Simplified block diagram

With the angle controller, the outer controller sees the following system

G�!zG2GR1

Prz r� �

z

�1

GP1 =
1

1 + sT2
· 10
s2

39



Simplified bode plot

Figure 4: Bode plot for the process with internal angle controller,

GP1 =
1

1 + sT2
· 10
s

2

40



Design of position controller

GP1 =
1

1 + sT2
· 10
s2

Process has third order dynamics ) poles can not be placed arbitrarily.

Write controller on series form

GR1 = K

✓
1 +

1

sTi

◆
1 + sTd

1 + sTd/10

It is composed of a lead link and a lag link!
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Design of position controller - Lead link Strategy

• N = 10 is given ! 55°phase advance at !c.

• Lag link will lower phase at !c by 6°.

• Controller phase at !c = 55� 6 = 49.

• Process phase at !c = �180� arctan!cT2 = �180� arctan 0.1!c

• Phase margin 'm = 180+ process phase + controller phase.

'm = 180 + 49� 180� arctan 0.1!c = 49� arctan 0.1!c

• Never better phase margin than 49°!

• !c = 2rad/s ) 'm = 38
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Design of position controller - Lead link

The value of !c determines Td and K

• b
p
N = !c ) Td =

p
10/2 ⇡ 1.6

• Choose K to make |G0(i!c)| = 1

|G0(i!c)| = |GR1(i!c)GP1(i!c)| = K
p
N

1p
1 + !2

cT
2
2

10

!2
c

K ⇡ 0.13
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Design of position controller - Lag link

Choose the integral time Ti such that the phase loss at !c is

6°(a = 0.1!c rule of thumb from lecture 11).

The parameter a in the lag link corresponds to
1

Ti
in the PID controller.

a = 0.1!c ) Ti =
1

a
=

1

0.1!c
=

1

0.1 · 2 ⇡ 5.0
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Final bode plot, G0

Figure 5: Bode plot of the open loop system
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Final bode plot, G0

Figure 5: Bode plot of the open loop system2
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Control design

Final bode plot, G0

Here we clearly see that the PID controller has lifted the phase with the peak

exactly where we have the crossover frequency.



Other approaches

• Could do pole placement with feedback from estimated states !
simple design procedure.

• Could do P-control of angle and pole placement for the position.

• Many other approaches possible.
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