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1. Introduction

Lab exercise 1 gave practical experience and insight into PID control. However, we

lacked systematic methods for choosing the controller parameters. The purpose of

this lab is to show how one can construct a mathematical model for the process one

wants to control and how to calculate suitable controller settings using this model.

The lab is conducted on the same tank system which was used in lab 1, see figure 1.

Figure 1 Lab setup.

Preparations

To get out as much as possible of the lab it is important that you master the concepts

of linearization, transfer function, characteristic polynomial and pole placement.

You should have read through this lab manual. You should also have worked through

the preparatory assignments 2.1, 2.2, 2.3, 2.5, 2.6, 3.1 and 3.5. Cooperation is allowed

(and encouraged). Observe that assignments 3.1 and 3.5 are done on an exercise

session.

The lab starts with a written test, where two randomly chosen review questions shall

be answered. Both questions must be somewhat correctly answered for you to

do the lab. Additionally, you must be able to account for your solutions of the

preparatory assignments. The review questions are found on page 17.

Don’t forget to bring the lab manual from lab 1 also to this lab in order to compare

your results.
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2. Model Construction

In this section we shall deduce a mathematical model for the tank system, starting

out with physical principles and construction data. The obtained mathematical model

shall then be verified through a couple of experiments.

Assignment 2.1 (Preparation) Give the differential equations which describe how

the level in the upper and lower tank, respectively, depend on time. An approximate

relation between outflow speed v(t) and tank level h(t) in a tank is given by Toricelli’s

law:

v(t) =
√

2gh(t)

The dynamics in the hoses and the motor can be neglected. Let A1 and A2 represent

the cross sections of the tanks, a1 and a2 the areas of their outflows, respectively.

Assume that the flow q from the pump is proportional to the motor voltage u with k

being the constant of proportionality.

Assignment 2.2 (Preparation) Show that if the tanks have the same cross section,

A1 = A2 = A, we can write the model as

dh1(t)

dt
=−γ1

√

2gh1(t)+βu(t)

dh2(t)

dt
= γ1

√

2gh1(t)− γ2

√

2gh2(t)

(1)

where β = k/A, γ1 = a1/A and γ2 = a2/A.

Calculate theoretical values for the parameters β , γ1 and γ2 from the below construc-

tion data. Insert your answers into the below table.

The cross sections of the tanks: A1 = A2 = 2.8 ·10−3 m2

The outflow areas of the tanks: a1 = a2 = 7 ·10−6 m2

Constant of proportionality for the pump: k = 2.7 ·10−6 m3/s/V

Assignment 2.3 (Preparation) In practice all the tank processes do not have exactly

the same construction data. Additionally, their properties are changed over time –

the holes are sedimented, the pumps are worn, etc. The theoretical parameter values

are therefore not always totally reliable. The real values can, however, be estimated

through a few simple experiments:

• β can be estimated by blocking the outflow of the upper tank, setting a constant

pump voltage and then measuring how long time it takes for the water to rise

to a certain level.

• γ1 and γ2 can be measured by setting a constant pump voltage, waiting until the

system reaches an equilibrium and then reading the stationary levels h0
1 and h0

2.

Starting out with equation (1), show how one can calculate experimental values of

first β , then γ1 and finally γ2 using the above experiments.
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Assignment 2.4 Log in according to your lab assistant’s instructions. Execute the

experiments and calculations according to assignment 2.3 to determine experimental

values of β , γ1 and γ2. Insert the results in the below table.

Theoretical values Experimental values

β

γ1

γ2

Check that the experimental values coincide fairly well with the theoretical ones. You

should preferably base your controller design on the experimental values.

Assignment 2.5 (Preparation) Linearize the system (1) about an arbitrary equilib-

rium (h0
1, h0

2). (During the lab we will use h0
1 = 10 cm, h0

2 = 10 cm)

Units and Unit Conversions Although unit conversions are in principle simple,

they often lead to errors. The problem is especially severe for a control engineer, who

often works with many different units within the system. Most often one works with

physical units during model construction. Later, when stepping over to control, it is

necessary to involve converters and conversion constants.

D/A A/DTank

10 V 0.1 V−1ck

Number NumberNumber Voltage VoltageFlow Level

Algorithm Amplifier, Level sensor
Pump

Process

Figure 2 Block diagram for the process with unit converters.

Figure 2 shows a block diagram of the process and controller with all involved con-

verters. It is not obvious where the border between process and controller shall be

drawn. It is, however, according to custom to choose the border so that the process

inputs and outputs are of same units. With this convention the transfer function of the

controller becomes unit-less. In our case the process in- and outputs will be of the

units Volt (V). However, note that the control algorithm in the computer works with

numbers (i.e. unit-less) because the A/D- and D/A converters contain a conversion

factor of 10 V.
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Assignment 2.6 (Preparation) Introduce the two measurement signals

y1(t) = c ·h1(t)

y2(t) = c ·h2(t)

where the level sensors have the proportionality constants c = 50 V/m. Show that

the linearized system from assignment 2.5 can be described by the following transfer

function:

∆Y1(s) =
pτ1

1+ sτ1

∆U(s) (2)

∆Y2(s) =
pτ2

(1+ sτ1)(1+ sτ2)
∆U(s) (3)

Determine the parameters p, τ1 and τ2 as functions of the process parameters β , γ1,

γ2, k, c and the the working point h0
1, h0

2.

3. Calculation of Controller Settings

In this section we shall calculate the controller settings for control of the upper and

lower tank, respectively. We start out with the mathematical models obtained in the

previous section. The controllers will be tested together with the tank system.

Controller parameters will depend on the specifications which we want the closed

loop system to fulfill. A specification can have different forms; in this case the poles

of the closed loop system shall be given as specification. By suitably placing the

poles, one can achieve wanted speed and damping of the closed loop system.

In this lab we will work with PI- and PID-controllers. By choosing the PI(D)-parameters

suitably, we can obtain a pre-specified characteristic polynomial (transfer function

denominator polynomial) for the closed loop system, see figure 3.

+ Process

−1

r y yr _____________
+ ω2ωs2 + 2 sζ

Controller
nominator

Figure 3 The closed loop system is specified by a desired characteristic polynomial.

Control of the Upper Tank

Assignment 3.1 (Preparation) Use the model (2) from assignment 2.6 to design a

PI-controller,

u(t) = K

(

e(t)+
1

Ti

∫ t

0
e(τ)dτ

)

⇔ U(s) = K

(

1+
1

sTi

)

E(s)

for control of the upper tank. Choose the controller parameters such that the closed

loop system gets a relative damping ζ and an undamped natural frequency ω , i.e.

such that the closed loop system gets a characteristic polynomial of the form

s2 +2ζ ωs+ω2
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PI
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Figure 4 Block diagram for control of the upper tank.

In the answer K and Ti shall be expressed in the process parameters p and τ1 together

with the design parameters ω and ζ .

Poles and Zeros We shall begin by investigating control of the upper tank. A block

diagram of the closed loop system is shown in figure 4. It is marked in the block

diagram where load disturbances, l, and measurement noise, n, enter. The transfer

functions from reference to output (Gyr), from load disturbances to output (Gyl) and

from measurement noise to output (Gyn) are given below.

Gyr =
pK(s+ 1

Ti
)

s2 + s( 1
τ1
+ pK)+ pK

Ti

Gyl =
sp

s2 + s( 1
τ1
+ pK)+ pK

Ti

Gyn =
s(s+ 1

τ1
)

s2 + s( 1
τ1
+ pK)+ pK

Ti

A step load disturbance l corresponds to opening the side valve of the upper tank.

The measurement disturbances n can model measurement noise or a constant offset

error in the level sensor of the tank.

The three transfer functions have the same denominator polynomial, whereas their

nominator polynomials differ. As the controller parameters are changed, the poles of

the system will move. In the transfer function from reference value to output, Gyr, also

the zeros of the system will move. The zeros of systems Gyl and Gyn are unaffected

by the controller parameters. If we want to determine how the pole placement affects

the system, we shall mainly study the response to load disturbances. If we want to see

the combined effect of poles and zeros we shall study the the response to a change in

reference value.

Assignment 3.2 Fix ζ to 1 and vary ω according to the below table. Assume that

the stationary level is h0
1 = 10 cm and calculate the parameters K and Ti of a PI-

controller, for every value of ω . This can be done using the Octave1 script calcpi

according to the following example (insert your estimated values of beta, gamma1

and gamma2):

>> beta = ... ;

>> gamma1 = ... ;

1Octave is a free MATLAB clone.
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>> gamma2 = ... ;

>> omega = 0.1;

>> zeta = 1;

>> calcpi

K =

3.7861

Ti =

18.249

Also view the script by typing

>> type calcpi

and compare the calculations with your preparatory assignments.

Try the controllers on the upper tank and investigate the responses to reference value

changes and load disturbances. Draw the responses in the below time diagrams (cf.

figure 5). Also insert the location of the poles in the pole-zero plots and compare with

the shape of the responses; especially observe their speed.

Carry out the experiments as follows:

1. Make sure that the interface is set to PI-control of the upper tank.

2. Make sure that the side valve of the upper tank is closed.

3. Enter the controller parameters K and Ti.

4. Enter the reference value 6 cm (r = 0.3) and wait until all signals have become

stationary.

5. Issue a reference value change to 10 cm (r = 0.5) and draw its response. Enter

the rise time and the size of the overshoot (see figure 5) in the table and also

wether the control signal saturates (i.e. reaches its max value) and for how long.

6. When the system has anew reached a stationary state, open the side valve and

draw the response to the load disturbance. Enter the settling time for the load

disturbance in the table.

Finally, also try the controller for the upper tank which you ended up with in lab 1.

(Fill out the last row of the table.)

Change in reference value Load disturbance

ω ζ K Ti Rise time Overshoot Saturation Settling time

0.1 1

0.2 1

0.5 1
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Figure 5 The definition of rise time and overshoot when changing reference value and set-

tling time of a load disturbance.
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Assignment 3.3 Now fix ω to 0.2 and instead vary ζ according to the below table.

Calculate the controller parameters K and Ti using Octave in the same way as previ-

ously. Try the controllers on the upper tank and investigate the responses to changes

in reference value and load disturbances. Draw the responses in the time diagrams

below. Also draw the locations of the poles in the pole-zero plots and compare with

the shape of the responses; especially observe their damping.

Carry out the experiments in the same way as in the previous assignment.

Change in reference value Load disturbance

ω ζ K Ti Rise time Overshoot Saturation Settling time

0.2 0.7

0.2 0.4

0.2 0.1
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Assignment 3.4 (Extra) Use one of the controllers calculated in assignment 3.3.

Decrease the gain K to one tenth of its calculated value. How will the step response

change? Use the controller and try to explain the result.

Kold =

Knew =

Hint: From assignment 3.1 we can obtain the relation

ω =

√

K p

Ti

ζ =
K p+ 1

τ1

2ω
≈

√
K pTi

2
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Figure 6 Step response for Kold and Knew.

Control of the Lower Tank

Assignment 3.5 (Preparation) Use the model (3) from assignment 2.6 in order to

design a PID-controller,

u(t) = K

(

e(t)+
1

Ti

∫ t

0
e(τ)dτ +Td

de(t)

dt

)

⇔ U(s) = K

(

1+
1

sTi

+ sTd

)

E(s)

to control the level in the lower tank. Choose controller parameters such that the

closed loop system gets the characteristic polynomial

(s+αω)(s2 +2ζ ωs+ω2)

In the answer K, Ti and Td shall be given in the process parameters p, τ1 and τ2

together with the design parameters ω , ζ and α .

Poles and Zeros We shall now investigate control of the lower tank. A block dia-

gram of the closed loop system is shown in figure 7. It is marked in the block diagram

where load disturbances, l1, l2, and measurement noise, n, can enter. The transfer

functions from reference to output (Gyr), from load disturbances to output (Gyl1 , Gyl2)

and from measurement noise to output (Gyn) are given below.
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Figure 7 Block diagram for control of the lower tank.

Gyr =
K p(s2 Td

τ1
+ s 1

τ1
+ 1

Tiτ1
)

s3 + s2( 1
τ1
+ 1

τ2
+ pKTd

τ1
)+ s( 1

τ1τ2
+ pK

τ1
)+ pK

Tiτ1

Gyl1 =
s

p
τ1

s3 + s2( 1
τ1
+ 1

τ2
+ pKTd

τ1
)+ s( 1

τ1τ2
+ pK

τ1
)+ pK

Tiτ1

Gyl2 =
s 1

τ1
(s+ 1

τ1
)

s3 + s2( 1
τ1
+ 1

τ2
+ pKTd

τ1
)+ s( 1

τ1τ2
+ pK

τ1
)+ pK

Tiτ1

Gyr =
s( 1

τ1τ2
+ s( 1

τ2
+ 1

τ1
)+ s2)

s3 + s2( 1
τ1
+ 1

τ2
+ pKTd

τ1
)+ s( 1

τ1τ2
+ pK

τ1
)+ pK

Tiτ1

A step load disturbance l1 corresponds to opening the side valve. The load distur-

bance l2 corresponds to an extra inflow to the lower tank, whereas measurement dis-

turbances n can model measurement noise or constant measurement errors in the level

sensor of the tank.

The four transfer functions have the same denominator polynomial, whereas the nom-

inator polynomials differ. As the controller parameters are changed, the poles of the

system will move. In the transfer function from reference value to output, Gyr, the

zeros of the system will also move. The zeros of the systems Gyl1 , Gyl2 and Gyn are

unaffected by the controller parameters. If we wish to investigate how the location

of the poles influence the system, we shall mainly study the response to load distur-

bances. If we want to investigate the combined effect of poles and zeros, we may

study the response to changes in reference value.

Assignment 3.6 Fix ζ to 0.7, α to 1 and vary ω according to the below table.

Assume that the stationary level is h0
2 = 10 cm and calculate the parameters for a PID

-controller using Octave and the script calcpid as below:

>> omega = 0.04;

>> zeta = 0.7;

>> alpha = 1;

>> calcpid

K =

4.1869

Ti =

55.210

Td =

17.259
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Also view the script by typing

>> type calcpid

and compare the calculations with the ones in your preparation assignments.

Try the controller on the lower tank and investigate the response to changes in ref-

erence value and load disturbances. Draw the responses in the below time diagrams.

Also enter the locations of the poles in the pole-zero plots and compare with the

properties of the responses; especially observe their speed.

Carry out the experiments as follows

1. Make sure that the interface is set to PID-control of the lower tank.

2. Make sure that the side valve of the upper tank is closed.

3. Set the controller parameters K, Ti and Td .

4. Set the reference value at 6 cm (r = 0.3) and wait until all signals have become

stationary. (The ”Optimal” button could be used for fast reset.)

5. Issue a change in reference value to 10 cm (r = 0.5) and draw its response.

Enter the rise time and overshoot corresponding in the table. Also write down

wether the control signal saturates, and for how long.

6. When the system is anew stationary, open the side valve and draw the response

to the load disturbance. Enter the settling time for the load disturbance in the

table.

Finally, try the controller for the lower tank which you ended up with in lab 1. (Fill

out the last row of the table.)

N.B.! These experiments take quite some time to perform. Preferably work with the

summary in chapter 4 during that time.

Change in reference value Load disturbance

ω ζ α K Ti Td Rise time Overshoot Saturation Settling time

0.035 0.7 1

0.05 0.7 1

0.1 0.7 1

y

t

Re

Im
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4. Summary

This summary intends to illustrate the workflow used in controller design and to post

relevant questions which you shall be able to answer after finishing the experiments.

The lab assistant will go through your summary before you pass this lab.

Assignment 4.1 Enter the stages you have gone through before and during the lab

in the empty boxes of the below figure, in correct order. (Observe that the parameter

estimation experiments are excluded. Where would they fit in?)
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• Closed loop transfer function Y (s) =
GpGr

1+GpGr
R(s)

• Physical modeling

• Nonlinear differential equation

ẋ = f (x,u)

• Linear differential equation

ẋ = ax+bu

• Linearization

• Laplace transform

• Specification as pole placement

s2 +2ζ ωs+ω2 = 0

• Test on process

• Evaluation

• Expressions for controller parameters

K = . . . , Ti = . . .,

• Transfer functions

Y (s) = G(s)U(s)

The real
double tank

Assignment 4.2 Give at least two limitations of the real process which are not

captured by the mathematical model (1).

Assignment 4.2 During-PI control of the upper tank, how are the poles of the

closed loop system changed when the parameter ω is increased? How does this affect

responses to changes in reference and load disturbances?
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How do K and Ti change when ω is increased? Why don’t we try ω = 5 rad/s?

Assignment 4.3 During PI control of the upper tank, how are the poles of the

closed loop system changed if the parameter ζ is decreased? How does it affect the

responses to changes in reference value and load disturbances, respectively? How

would the step response look in case we chose ζ = 0?

Assignment 4.4 Why don’t we use the D-part when controlling the upper tank?

Assignment 4.5 During PID-control of the lower tank, how many poles does the

closed loop system have?

How are the poles of the closed loop system changed if the parameter ω is increased?

What effect does this have to the responses to changes in reference value and load

disturbances, respectively?

How is K, Ti and Td changed when ω is increased? Why don’t we try ω = 1 rad/s?
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Assignment 4.7 Enter your recommendations for suitable controller parameters in

the below table. Compare with the parameters you ended up with in lab 1.

Ti=

T =
d

Ti=

i=T

i=T

T =
d

K =

PID

PI

P

K= K =

K = K =

K =

Lower tankUpper tank
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Review Questions for Lab 2

1. Determine all stationary points (x0,u0,y0) for the system

dx

dt
=−a

√
x+bu

y = cx

2. Linearize the system

dx

dt
=−a

√
x+bu

y = cx

about the stationary point (x0,u0,y0).

3. Write down the transfer function for a

(a) P-controller

(b) PI-controller

(c) PID-controller

4. Determine the closed loop transfer function for the open loop

r y
GR(s) GP(s)

−1

Σ

when GR(s) = K and GP(s) =
1

1+sT

5. In second order systems it is common to talk about two parameters

ζ (relative damping)

ω (natural frequency)

Illustrate how these parameters define the location of the poles in a pole zero

plot.

6. The transfer function of a system can be written

as

G(s) = K
Q(s)

P(s)

Observe the pole-zero plot of the system (figure

to the right) and determine Q(s) and P(s), respec-

tively.

1

1
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