MinSeg balancing using pole-placement

This version: November 1, 2017

QEGLERTEK N, Name:
P-number:
Date:
'q(/ O\’
"Omaric conT®
Passed:

LINKOPING

Chapter 1

Introduction

The purpose of this lab is to balance the MinSeg robot. To develop the
balancing controller, we will use model-based state-space methods using
pole-placement.

Figure 1.1: Examples of systems (SegWay, JAS39 gripen, Proton Rocket,
Plasma Tokamak) with unstable dynamics just as the MinSeg
robot. All these applications require stabilizing controllers.

1.1 Hardware set-up

The lab is based on three main hardware components.

To begin with, we have a standard desktop computer. This computer is
used to automatically develop and deploy code using MATLAB and SIMULINK
models.

To supply power to the DC-motor, perform measurements and compute
the control input, we use a board with an Arduino micro-controller which
runs the auto-generated code. It also communicates with the desktop com-
puter and thus allows us to look at measurements. The Arduino board with
the motor and wheels is called the MinSeg.

1.2 Troubleshooting

The wheels turn slowly and/or erratically Make sure the tires do not rub
against the motor. You can pull the wheels apart as they slide on the wheel
axis.

Complaints about COM port or connection when downloading to board
Try again. If it still complains, disconnect USB-cable and connect it again.
Ifit still fails, try another USB port. Ifit still fails, save your model and restart
MATLAB.

Complaints about OUT OF MEMORY Save your model and restart MAT-
LAB.

Nothing happens/strange things happen The introductory tasks are per-
formed in external mode with a slow sampling rate (MATLAB keeps con-
nection to the board and can plot signals), while balancing requires a higher
sampling rate which forces us to run in normal mode (no communication
with MATLAB). Hence, make sure you are in the correct mode as specified
in the task, and that you use the deploy button when in normal mode (in-
stead of running with green run-button).

Common mistakes. Wrong sign in feedback when computing control in-
put. Wrong order on states when computing control input. Missing to set
sample-time in discrete-time integrator to -1. Sample-time variable TS not
set to 0.006 when stabilizing.

Chapter 2

Preparation

The questions below, and all questions throughout the document marked
as Preparation must be done before attending the lab. Note that there are
additional preparation exercises in Chapter 3.

Solutions to all questions should be available upon request from the lab
assistant, and the preparation exercises in Chapter 3 are preferably written
in this printed documented.

The scheduled time spent with the laboratory equipment is only a small
part of the complete lab, as a major part is spent on the theoretical mate-
rial during preparations. When the lab starts, it is assumed you have done
all preparations, and have a clear idea of the tasks that will be performed
during the lab.

Preparation 1 Read Sections 8.1-8.4, 8.8 and 9.1-9.2 in the course book by
Ljung & Glad.

Preparation 2 A simple model of an inverted pendelum (which is a simpli-
fied model of our balancing robot) with a force applied to the base is given

by

(01 0
i = (25 0)x(t)+ 1)u(t) 2.1)
yo = (1 0)x((2.2)

where y(t) = x1(t) is the angle of the pendelum, x,(t) is angular rate (rota-
tional velocity), and u(t) is the applied force. Show that the open-loop poles
are given by +5.

Preparation 3 A state-feedback controller u(t) = —1yx1(t) — Lxa(t) + lor (2)
is used. Show that the closed-loop system is given by

0o 1 0
(25_ l —12) x(1) + (lo) r(t) (2.3)

(1 0)x(n) (2.4)

x(1)

(1)

Preparation 4 Find |y and I, such that the closed-loop poles are placed in
-1 and -2.

Preparation 5 Now assume we try to design a controller which only uses
the angle x, (1), i.e., l» is forced to be zero and no derivative feedback is used.
Effectively, we use a P-controller. Show that it is impossible to stabilize the
pendelum using this approach.

Preparation 6 Read the complete lab-pm. There are some theoretical ques-
tions in the pm which you are supposed to complete as preparation.

Preparation 7 Print this document. You must bring a physical copy to the
lab.

Chapter 3

The lab

As explained above, in this lab we will finally balance the MinSeg, and to do
so we will use state-space methods for control.

Items labeled Preparation are questions you are supposed to solve and fill
out before attending the lab.

Items labeled Task are questions you solve when attending the lab and have
access to the hardware

3.1 MinSeg modeling

Complete physical modelling of the MinSeg is beyond the scope of this lab,
but let us look at the basic physics which is used to derive a model.

In principle, we have two parts, two wheels on a joint axle and a solid body.
The external forces acting are

1. The torque on the wheels causing them to rotate. This torque is gen-
erated by our control input u(¢#) via the DC-motor, and the physics
describing how the wheels behave when voltage is applied on the
DC-motor was investigated in depth in LAB1. A positive input volt-
age u(t) generates a torque in the positive 0(#) direction causing the
wheels to rotate clock-wise.

2. Friction force which prevents the wheel from slipping on the surface.

5

e e e e e e e e e e e e e e

Figure 3.1: Definition of tilt-angle a(¢) (positive clock-wise), wheel rotation
angle 0(7) (positive clock-wise, relative to initial position), and
position of center of wheel z(?), relative to initial position.

3. Gravitational force.
Relevant physical states of the MinSeg are

1. The position z(#) of the center of the wheel (relative to the initial po-
sition). To balance the MinSeg at a fixed place (the initial position
where we started the MinSeg), we want this value to be 0.

2. The velocity z(?) of the center of the wheel.

3. The tilt-angle a() relative to straight up (this is the angle we want to
keep at 0)

4. The angular rate &(t).

As we will see, these 4 states are the states required to create a mathematical
state-space model of the MinSeg, and thus used in a state-feedback con-
trol law u(t) = f(z(1), 2(1),a(t),a&(r)). The control goal is to have all states
converge to 0, i.e., standing straight up with no movements on the initial
position where it was released.

3.2 Sensors and measurements

To implement the control law, we must have measurements of the 4 states.
However, the only direct measurements we have are

1. The angular rate &(¢) is obtained from a gyro (which has noise and
calibration error)

2. The angle a(t) can be reconstructed from accelerometer signals when
moving slowly (with noise and calibration errors).

3. The wheel angle 0(#) can be measured using a rotary encoder. This is
the measurement we have used in previous labs.

One way to proceed could be to develop an observer which estimates the 4
states from the available measurements. However, we will proceed with a
slightly different approach, to reduce complexity of the design task.

Angle and angular rate measurements

The MinSeg is equipped with a so called inertial measurement unit (IMU)
which delivers measurements of angular rates (rotational velocities) and
translational accelerations in 3D. You typically have a similar device in your
smart phone.

The gyro allows us to pick up the rotational rate of the MinSeg in three
directions, and one of these is the rate w(t) = &(#). In practice this mea-
surement is not perfect, and a typical problem is calibration errors, which
means that it does not give the value 0 despite the device being completely
still. If we let w,,(#) denote the gyro measurement, and assume a constant
calibration error b we have

=
B
<o
30
N
&
a .

Figure 3.2: The accelerometer and gyro are placed on the blue board (MPU
6050) on the bottom left of the figure. The sensors are (with the
setup in this lab) capable of measuring up to 4g acceleration
and an angular rate of 250°/s. The blue board combining an ac-
celerometer and a gyro is called an IMU (inertial measurement
unit). Retail price in the order of 50SEK. An IMU with similar
performance was at least 100x as expensive 20 years ago, and 10
times as large.

wpt)=a)+b (3.1)

A first task in the lab will be to find an approximate value of b for your de-
vice. If we know this calibration error, we can simply subtract it from the
measurements. We call this estimate of the calibration error b.

The gyro measurement of the angular rate can be exploited for more. We
need the tilt-angle a(#), and exploit the fact that a(t) = fot o(™dTt+a(0). In
other words, integrating the measured angular rate gives us the angle. This
works in theory, but in practice we use the measured angular rate, and we
don’t know the initial angle a(0) but have to set it to 0. Let ag(¢) denote the
angle estimate obtained by integrating the calibrated gyro measurement
0RO ->b

t
(xg(t):f (@(1) +b—b)dt =a(t)—a0) +(b-b)t (3.2)
0

8

Not only is the estimate wrong due to the unknown initial condition, we
will also have an error in the angle estimate which grows with time, unless
we have managed to calibrate the device perfectly (never possible in prac-
tice) and the initial angle really was a(0) = 0. Hence, we cannot trust this
angle estimate on a long time-scale. This phenomena is called linear drift,
and the approach to estimate the angle is called dead-reckoning. It does
however detect changes in the angle very well.

Another approach to obtain a measurement of the angle is to look at ac-
celerometer signals, called ay (1), a,(¢) and a.(1).

Figure 3.3: The acceleration relative to free-fall will be picked up in a sta-
tionary situation on the two accelerometer signals a(f) and
a;(t) allowing us to compute the tilt-angle 0

The accelerometer measures forces on the body causing accelerations. In
practice this means that when the device is completely still, there should

be a total acceleration of g = \/ax(t)2 +ay(1)? + a,(t)?. The three measure-
ment directions are aligned with the geometry of the MinSeg in the way
that when the MinSeg is lying flat on the table («(f) = —m/2), a,(t) = —-g
and all other accelerations are 0, and when the MinSeg is standing straight
up (x(#) = 0) we have a, () = —g with all other measurements 0. By geom-
etry, it follows that the tilt-angle estimated from the accelerometer is given
by a,(#) = arctan(ay(f)/a.(t)). However, this reasoning only works when
the MinSeg is completely still. When the MinSeg is moving around, this re-
lation longer holds, and the more rapid the movements are, the worse the
estimate will be.

We thus have two estimates of the angle, ag(#) computed from the gyro,
and o, () computed from the accelerometers. The estimate ag(f) can not
be trusted on a long time-scale as it has a slowly growing error. On a short
time-scale it works well though and measures changes in the angle very
well. The signal a,(t) on the other hand has complementary properties.
If the MinSeg is relatively still, the estimate can be trusted, but if it moves
too quickly, the signal is no longer valid and is disturbed by the movements.
Another way to say the same thing is that there are low-frequency errors on
ag (1) and high-frequency errors on a,(#). A clever way to combine these
two signals is a so called complementary filter which filters out the trust-
worthy parts and sums them up. Let us denote this final estimate o()
where ¢ stands for complementary, and introduce a low-pass filter L(s) and
high-pass filter H(s) = 1 — L(s). In Laplace notation, we have

ac(s) = H(s)ag(s) + L(s)ag(s) = (1 - L(s)ag(s) + L(s)aa(s) (3.3)

The filter used in this lab is L(s) = 737, i.e., a filter with bandwidth 3 rad/s
(or time-constant 0.33s). Hence, movements occurring on a time-scale
much faster than 0.33s is predominantly taken from the gyro (quick changes),
and slower movements are mainly extracted from the accelerometer signal.

10°

10+

Magnitude (abs)

10' L L L L i il L i i L - i L i
10" 10° 10’ 10°
Frequency (rad/s)

Figure 3.4: Amplitude gains of the low- and high-pass filters used to re-
move noise on the angle estimated from accelerometer, and re-
moving slowly varying components from the gyro-based angle
estimate.

The details concerning the implementation and tuning of this complemen-
tary filter is not part of the lab.

10

Position and velocity measurements

To obtain z(f) and z(f) we need some geometry. Consider the case when
the MinSeg is kept at a constant tilt-angle a(#) (such as straight up) and
the wheel rotates 0(¢). The center of the wheel will then move R6(#) along
the surface, where R is the radius of the wheel. Similarly, consider the case
when the wheel is kept fixed to the body, but the whole MinSeg is tilted a(t)
with the wheel rotating on the surface (for example from standing straight
up to lying down). As the wheel is fixed to the body, the wheel center will
once again move Ra(f) along the surface. Combining this, we have

z(t) =R(a(t) +0(1)) (3.4)
The velocity of the center of the wheel is consequently given by
2(1) =R@(1) +6(1)) (3.5)

The angular velocity &(¢) is available from the gyro, while 6(#) must be cre-
ated by numerically differentiating the wheel encoder signal. With that, we
have all necessary signals required for the state-feedback control law.

Preparation 8 Assume the worst possible measurement error of the motor
angle 0(t) is +0.5°, and that we create an estimate of §(t) using a simple Eu-
ler approximation (0(t) —0(t —Ts))/Ts where the sampling-timeTs is 0.006
seconds. The wheel radius R is 0.02 meter. Assume the measurement of a(t)
is perfect with no error. Show that the error in the estimate of the velocity
z(t) can be up to 0.058 m/s due to the measurement error. Hint: If0(t) and
0(t —Ts) each can be measured with a precision of +0.5°, what is the worst-
case error in the difference 0(t) — 0(t —Ts) 2.

11

3.3 State-space model

By modelling the pendelum mechanics in combination with the the elec-
trical motor, one arrives at a nonlinear model describing the robot. After
linearization in the stationary point corresponding to standing straight up,
a linear approximation is given by

—703z(%) — 5.20(%) +14.80(1) +33.2u(r) (3.6)
31352(¢) +58.4a () —65.8((¢) — 148u(r) (3.7)

QN
Il

Preparation 9 Define the state vector

a@] [z
Nwo| |z

D=1 ol aw (3:8)
ao| |aw

and output of interest y(t) = a(t). Derive the state-space matrices A,B,C,D
in a state-space model of the MinSeg x(t) = Ax(t) + Bu(t), y(t) = Cx(1) +
Du(t) using 3.6 and 3.7. Remember X1 = %xl(t) = %z(t) =z(t) =2..

Preparation 10 Based on physical insight on the uncontrolled MinSeg, which
statement must be true?

1. At least 1 eigenvalue of A has a positive real part.

12

2. All eigenvalues of A have negative real parts.

Task 1 (Check model) Open and run minseg/balance/labsetup.m in the MAT-
LAB editor. Make sure you understand all the variables which are defined.
Check that the definition of A, B, C, and D are consistent with your model in
preparation 9 (after you have run the file, the variables are available in the

workspace, so you can simply type the name of the variable in the command
window, and it will be displayed)

13

3.4 Measurements and sensor calibration

Our first step is to calibrate the sensors in order to remove the main cali-
bration errors on the gyro signal and accelerometer signals.

Task 2 (Calibration of gyro) Open the model minseg/balance/templatel. Take
some time to understand the general logic. Your first task is to calibrate the
gyro sensor. Assemble the robot as illustrated on the front-page and place
the robot with the battery holder down on the table. Confirm USB-cable is
attached, compile, download and start the code by pressing the green run
button.

In the block Gyro calibation, compensate for the calibration error as de-
scribed in the text in the model. How large is the calibration error (rad/s)?

Task 3 (Calibration of accelerometer) The accelerometer is typically not mounted
precisely straight on the board, which will give a slightly wrong angle esti-

mate. This can also be seen as a calibration error. In the block Angle esti-

mate from accelerometer, compensate for the the calibration errors in the

two accelerometer signals as described in the text in the model. How large

are the two calibration errors (m/s*)?

Task 4 (Check angle estimate) Study the final angle estimate and various
raw and filtered versions available in a plot in the block Complementary
filter. Tilt the robot from flat on the table (—m/2) to 0 (hold it against the
wall or the computer) and confirm that it is reasonably calibrated. When
you move it around, you should see

Yellow: The final estimate we use, rather smooth, correct angle and
reacts quickly to movements

14

Purple: Low-pass filtered o, (t), smooth, correct angle statically, but
lags behind

Blue: High-pass filtered ag (t), moves around 0 statically, reacts well to
changes

Red: Raw o (1), correct angle statically, reacts quickly but noisy

Green: Raw oy (1), incorrect angle statically, reacts quickly

3.5 Safety first!

Before we start to develop and test the balancing controller, we introduce a
safety feature which will force the motor to turn off if the absolute value of
the tilt angle is too large.

To reduce clutter with too many wires in the model, we use so called From
and Goto ports. Instead of drawing a wire from point A to point B, one can
draw a wire from A to a Goto port and give it a label, and then draw a wire
from a From port to the point B. As you can see in Figure 3.5, all inputs to
the controller blocks are immediately directed to three labeled Goto blocks.
If we need these anywhere, we just add a new From port at that point. Of
course, if you want to draw wires, you can do this. It will be rather messy in
the end though.

Task 5 (Add safety switch) Implement the model in Figure 3.5. Our goal is
to let through the lower signal 2 volts) when the tilt-angle |«(1)| is suffi-
ciently small, and send through the upper signal (0 volts) when the angle
is beyond our safety zone. Effectively, we want the robot to shut off if it is
tilted too much and we cannot save it. Later on the lower input will be our
feedback control signal, but for now we simply use a constant signal u(t) = 2
to see if the safety switch works.

The Switch is found under Signal routing.

The abs operator is found under Math operations.

* The From port is found under Signal routing.

The constant blocks are found under Commonly used (or copied).

15

Set the label in the From block to alpha. In the Switch, set the threshold to
pil6 (30°).

File Edit View Display Diagram Simulation Analysis Code Tools Help
BeEH e 4 EOE 4O @ Norma | @
labitemplate Controller
@ |["allabitemplate » {Pa| Controller » -
&
Ed
=2
§ o]
JR—
= siphadot save o) E—D
iphadat
= [re
save siphs. From Abs Volts To Aduino +
= L}
Gr— [thets] o
theta sove hets " Switch
»
Model successfully deployed to "Arduino Mega 2560", View 4 warnings 100% FixedStepDiscrete

Figure 3.5: Safety switch to ensure robot is turned off if tilt-angle becomes
too large. Note the use of From and Goto. When «(?) enters
the controller block, it goes to a Goto port with the label alpha.
When we need the value of a(#) in the model, we pull it from a
From port, and avoid a wire going all over the model. Do not
be confused by the fact that SIMULINK uses the name u in the
display of the function block for the absolute value. It is simply
SIMULINK standard that inputs to functions are displayed as u.

In terms of standard programming, the switch implements the code

if |a(7)| > 30°

u(t)=0
else
u(t)=2
end

Remember to save your model after every change!

Task 6 (Test of safety switch) Run your SIMULINK model. When the robot
is close to straight up, the wheels should start to move, and when the angle
is too large, it should shut off. Note that this also is a way to check that your
angle estimator works. Does it turn of when the angle is large enough?

16

17

3.6 P-control

At first, one might think it is trivial to balance the robot (and similarly a
SegWay). A common misconception is to think that we can stabilize it by
driving forwards if the robot is tilting forwards, and drive backwards if it is
tilting backwards. In control language, this is a P-controller as the input is
proportional to the controlled variable,

u(t) =Kpa(1) (3.9

The reference signal is zero, and with the sign-conventions in the model
and assumed positive Kp, it appears reasonable to have positive input volt-
age if the tilt-angle is positive (positive input generates torque in clock-wise
direction on wheels and thus accelerates in the positive z-direction as ex-
plained in Figure 3.1). Make sure you understand this and agree from a
simple intuitive physical point of view!

Task 7 (Setup for normal mode) Change the sample-time TS t00.006 in the
script labsetup and run the script. With this fast sampling (used during sta-
bilization), we will no longer be able to run in external mode and look at
signals, so the mode has to be changed to normal as indicated in Figure 3.6.

Figure 3.6: When in stabilization mode with fast sampling, we must set it
to normal model (1) and deploy to robot (2) without communi-
cation when running the controller.

Task 8 (P-controller) Implement a P-controller u(t) = Kpa(?) (i.e., change
your controller block which currently has a constant input signal u(t) =2
and implement u(t) = Kpa(t) instead). Start with the gain Kp = 100.

Compile, download and start the controller by pressing the Deploy to hard-
ware button indicated in Figure 3.6 with (2). Raise the robot and see if it
works (hold your hands around it!). Try some other gains to see if you can
improve the behavior (you must deploy new code after every change). What
happens?

18

Task 9 (P-controller theory) How does your result relate to Preparation 5?

As you will note, it is impossible to stabilize the robot using the tilt-angle
only. A more advanced controller is necessary. We predicted this in the
preparations on a simplified model, but we can see this using the full model
also. The system is described by

x(1)
u(t)

Ax(t) +Bu(r) (3.10)
Kya()=[0 0 Kp 0]x(2) 3.11)

so the closed-loop model will be
() = (A+B[0 0 Kp 0])x(f) (3.12)

Hence, we can easily check the eigenvalues of the closed-loop model.

Task 10 Compute the eigenvalues for the closed-loop systems you tested. You
can do this in MATLAB with eig(4 + B*[0 0 Kp 0]). Try some different
Kp. Which important property do you see?

19

It is possible to stabilize the angle using a PD-like controller, i.e., taking
a(1r) into account also. However, it is trickier than what one would believe,
as any remaining calibration error in the angle will lead to problems which
has to be taken care of. We will not proceed in that direction, but instead
go straight to a more advanced but more general state-space approach.

20

3.6.1 Computation of position and velocity

Before we can implement the state-feedback controller, we must have all
states available. We already have estimates of &(¢) and a(#) from the gyro
and the complementary filter, but z(#) and 2(¢) are still missing. A com-
pletely general approach would be to develop an observer-based solution
for all states, but for simplicity we use a more direct approach where we use
an Euler approximation together with (3.4) and (3.5) to obtain estimates of
z(t) and z(t) based on the estimates of a(#), &(¢), and the measurement of
the wheel angle 0(¢)

Task 11 Add code in the Controller block to compute the velocity z(t) ac-
cording to equation (3.5), as illustrated in Figure 3.7. Angular rate &(t) is
already available, but the rotational velocity 8(t) of the wheel has to be com-
puted using an Euler approximation from the encoder value9(t), as we have
done in previous labs. The result is kept unconnected for now and will be
used later

alphadot]

Tsz

From3 Discrete convert to
Derivative meters/s

Figure 3.7: Computation of z(¢) = R(&() +0(1)).

Task 12 Add code in the Controller block to compute the position z(t) ac-
cording to equation (3.4). The result is kept unconnected for now and will be
used later.

21

3.6.2 State-feedback and pole-placement

The important concept in this lab is that we are going to compute controller
gains by using a model.

The four states z(¢), z(t), a(t),&(t) describe the current state of the robot,
and it is thus natural to think that a controller which uses all this infor-
mation, instead of simply the angle a(¢), should be able to perform much
better. However, the complexity in trying to manually guess or tune how
these 4 states should be used in a feedback-law would lead to hours of test-
ing. Instead, a structured approach is required, and pole-placement is one
such model-based approach.

A simple control structure is a linear control law. With the four states, de-
noted x(¢) when placed in a column vector, and a reference angle r(z), a
natural control-law candidate is

u(t) =—-lz(t) = Lz(t) — lsa(t) = 1ya(t) + lor (1) = —Lx(t) + lpr () (3.13)

The negative sign is simply a sign-convention used in the control field. If
we use this control law on the system Xx(¢) = Ax(t) + Bu(t), the closed-loop
system is given by

x(t) = (A-=BL)x(#) + Blyr (1) (3.14)

Since stability and transient performance of the closed-loop system is de-
termined by the poles of the closed-loop system, and poles are equivalent
to the eigenvalues in the state-space model, all we have to do is to come up
with a choice of L such that the eigenvalues of A — BL have suitable proper-
ties. The most direct method to do this is pole-placement (there are alter-
native more advanced methods available).

In MATLAB, if we want to compute a matrix L to place the 4 poles (we have
4 states in the model, hence 4 poles), we use the command place. For in-
stance, if we want one pole in —1, one in —2, and a complex pair in -2 + i,
we write

L = place(A,B,[-1 -2 -2-i -2+i])

Hence, instead of manually trying to guess which values the feedback gains
l, I, I3 and 4 should have, we propose a reasonable placement of the
poles. Trivially, all of them should have negative real part (otherwise the

22

closed-loop system is unstable). Beyond that, it is not obvious. Typically,
one has to resort to some physical insight on the time-scales and typical
behavior in a well-behaved closed-loop system. In some applications, en-
gineering experience gives direct hints on what suitable pole locations are.
Importantly though, coming up with reasonable placements of the poles is
easy compared to trying to guess reasonable values on L directly (which is
close to impossible).

In our case, we roughly speaking have two different time-scales. The core
stabilization of the tilt-angle happens on a very fast time-scale (millisec-
onds), meaning that the associated closed-loop pole will be far into the left
half plane. The stabilization of the position of the robot happens on a much
slower time-scale (seconds), meaning that some poles are much slower and
closer to the origin.

As a first try, try placing one pole around —0.1 to —1 (the slow) and one pole

at —500 to —1500 (the fast), and the remaining between —5 and —10.

Task 13 (Compute feedback gains) Add code to the file labsetup to com-
pute a state-feedback gain, and run the file

wanted = [? 7 7 7] % We want closed-loop poles here
L = place(A,B,wanted) 7% Compute feedback gains
eig(A-BxL) % Check that we achieved desired poles!

Note that there is a limitation in the command place in that you cannot have
two identically placed poles. Where did you place the poles, and what is the
resulting feedback gain L?

Task 14 (Understand L) Look at the values of L and recall that the control
law is u(t) = —Lx(t) (the reference is 0). Let us try to understand the logic

23

in the control law, in particular the sign of some of the gains, and see if it
matches your intuition. Remember, we are trying to drive all states to 0.

1. When the angle a(t) is positive and all other states are zero, show that
the robot will accelerate to the right. Does this make sense intuitively?

2. If the position z(t) is positive and all other states are 0, show that the
robot initially will accelerate to the right. Does this make sense in-
tuitively? Hint: if you move to the right, in which direction will the
MinSeg fall...

Task 15 (Simulate closed-loop system) Since we have the model, we can
simulate and see how the closed-loop system will behave, before we actu-
ally test in practice. We create a model from the reference angle (with ly =0)
to the position z(t) = x1(t) (type help ss if you are unfamiliar with the com-
mand. ss)

Gecz = ss(A-BxL,Bx0,[1 0 0 0],0);

We can for example simulate to see how far the robot will move when it sta-
bilizes the robot from an initial condition where the robot angle is 10°. To
simulate the system from a given initial condition, we use the command ini-
tial.

x0 = [0 0 10%pi/180 0];
initial (Gecz,x0)

24

A plot will be generated which shows a simulation of the position z(t). How
far does the simulation predict that the robot will move when catching the
initially tilted robot using your control law?

Time to implement the controller! All we have to do now is to implement
u(t) = —lhiz(t) - Lz(t) — lza(t) — ya(t) = —Lx(t). All states are available in
the Controller block now, the gains have been computed, so everything
is available. How you actually implement the computation is up to you.
Two alternatives are shown in Figure 3.8. The right alternative uses a direct
scalar description, while the left figure shows how you first can combine
the 4 states in a column vector using a Mux (found under Commonly used
blocks) followed by a suitable matrix multiplication (change the field Mul-
tiplication in the Gain to Matrix K*u)

State-feedback

Figure 3.8: Alternative ways to represent u(t) = —Lx(¢). Note that you can
use the variable L in the blocks, i.e., you do not have to (and
should not) copy the numerical values.

Task 16 (Implement state-feedback) Implement the state-feedback controller.

25

Make sure you use the correct states and correct sign. Don’t copy numbers
manually, but use the variables directly in the blocks.

Task 17 (Deploy!) Moment of truth. Deploy the controller. Stand the robot
up, hold it carefully, and see if it stabilizes. It wants to move away a bit ini-
tially (we will understand this later) so let it move around while you support
it gently. Sometimes it can be convenient to temporarily turn off (and reset)
the MinSeg while standing up, and you can do that by pressing the small
button in the top right. Does it stabilize? (If not, check your computation of
u(t) and check that all signs are correct and that you using using the correct
states. Hold it in the air, do the wheels start turning in the correct direction
when you tilt it).

Task 18 (Improve) Try to improve the performance by testing other pole-
placement configurations. There is no best answer, and the model is only
an approximation so theoretical predictions are not necessarily perfect. A
typical way to calm the controller down is to make the slow pole slower (this
pole is connected to the position z(t), hence if slower the controller will not
put as much effort on trying to move the MinSeg to the correct position)

Task 19 (Practical performance) Assuming the model of the robot is cor-
rect, theory tells us that the robot is asymptotically stable and all states should
converge to zero. Your robot will most likely continue to move around. What

26

could the causes be? Hint: For one reason, think of preparation 8. Addition-
ally, what do you know about the gyro signal after it has been calibrated,
is it zero when still? For another reason, check the wheels (are they firmly
attached to motor?). Finally, what did we learn about the input to the DC-
motor when the requested voltage was small or huge on the PID lab?

When we design a controller based on a model, one might think that it only
will work when the real system behaves precisely as the model predicts.
Having a margin for model error is called robustness, and we will now prac-
tically test the robustness by changing properties of the real system, with-
out changing the model or control law. Use the controller tuning you were
most satisfied with above.

Challenge 1 (Small wheels) There should be extra wheels available in the
lab. Change your wheels to a smaller set of wheels, and see if the controller
still stabilizes the system. Is your controller robust enough!

Challenge 2 (Large wheels) Change your wheels to a larger set of wheels,
and see if the controller still stabilizes the system. Is your controller robust
enough!

27

3.6.3 Estimating balance angle using integral action

If we start the robot at a particular position, it should go back to that ini-
tial point as it corresponds to z(t) = 0 (the closed-loop system should be
asymptotically stable which means all states converge to 0 if there is no ref-
erence). What you typically see is that the robot wants to move to some
other position. This can be explained by the fact that the robot is not at
balance at 0°. If you carefully look at the robot when balancing, you will see
that it is slightly tilted backwards. If the robot is standing still, we know all
derivatives are 0, and the input must be zero. Hence, if the robot ends up
in a steady-state position z* at balance angle a*, it must satisfy

ut)=0=-Lz*-La* (3.15)

Preparation 11 (Theoretical steady-state position) GivenL and (for exam-
ple) o* = —2° = —=21/180, what position would theory predict it will end up
in?

Task 20 (Practical steady-state position) With a controller you are satisfied
with and the original wheels, hold the reset button (small button upper right
corner on the board) and place the robot in balancing position. Note where
you have placed the robot, release the reset button and let the robot start the
stabilization. Can you see that the robot consistently moves to a position
away from the initial starting point?

28

If we knew the balance angle a*, we could simply change the control law to
u(t) =—hz(t) - Lz — I3 (a(d) — ™) — Lya(r) (3.16)
and the only possible stationary point would be z(f) = 0,a(f) = a*.

Can we teach the control law what the non-zero balance angle o* is, and
compensate for this? Yes, by integral action!

If the robot ends up in a non-zero positive position z(t), it indicates that
the robot is tilted slightly backwards at steady-state!, and we are trying to
achieve the wrong balance angle. To monitor if we end up in the wrong
position, we use an integration of z(¢). Effectively, we define an estimate
of the balance angle as a* (f) = — K| fot z(1)dT. As long as z(¢) stays positive,
the value of o* () will continue to decrease. As the controller then sees a
smaller angle error a(f)—a* (1), it can move towards the initial zero position.
If we use a too large gain in the integrator, we can easily become unstable
or oscillatory, as we overcompensate and update the adjustment too fast.

Hence, the new control law is

t

u(t) —hz(t)-bz() - 13 ((x(t)—(—Klf Z(T)dT))—l4('x(t) (3.17)
0

t

—hz(t)-bz(t) - 13 (O((t) + Klf Z(T)d‘l’) — Ly (1) (3.18)
0

Task 21 (Integral action to the rescue) Add a discrete-time integratorin the
model to implement the idea. A suitable gain is around 0.1 or so. Don'’t forget
to set the sample-time in the integrator to —1 which means it uses the model
sample-time. Repeat the experiment where you place the robot standing up
at an initial point and start the robot. Does the robot come back to the initial
point after some initial movements?

Lor the accelerometer angle estimate is poorly calibrated, giving us a wrong value of the
actual angle

29

Task 22 (Integral tuning) Experiment with a much larger and smaller inte-
gral gain (change by a factor of 10). How do the retuned controllers perform?

The slightly non-zero balance angle is a fixed geometric property of your
robot. The value of the integral should converge to a fixed value, and an
alternative could have been to figure out this fixed value, and simply use a
constant value of a* instead of dynamically estimating it through an inte-
gral. However, by estimating the balance angle, we can cope with a chang-
ing environment and robot.

30

3.7 Summary and reflections

Summarize and reflect on what you have seen and learned in this lab.

Questions Answers
1. State-feedback control design O Yes
through pole-placement requires
amodel 0 No
2. State-feedback control requires | O Yes
a perfect model 0 No
3. State-feedback control requires | O Yes
perfect measurement of all states 0 No
4. For the closed-loop system to O All eigenvalues of A-BL have
be stable, to be real
O All eigenvalues of A-BLhave

to have negative real part

All eigenvalues of A-BL have
to have positive real part

All eigenvalues of A have to

be real

All eigenvalues of A have to
have negative real part

5. A gyro measures

a

O
(I

an acceleration

an angle

an angular rate

velocity)

(rotational

6. High-frequency noise can be
removed with

O alow-pass filter

O ahigh-pass filter

7. Slowly varying and constant
components in a signal can be
removed with

O alow-pass filter

O ahigh-pass filter

Most unclear to me is still:

31

