
Institutionen för

REGLERTEKNIK

Automatic Control, Basic Course (FRTF05)

Exam December 19, 2017, 13:00-18:00

in room F117 of New Main Building, BUAA

Points and grades

All answers must include a clear motivation. The maximal number of points is 25.
The maximal number of points is specified for each subproblem.

Betyg 3: minimum 12 points
4: minimum 17 points
5: minimum 22 points

Accepted aids

Mathematical collections of formulae (e.g. TEFYMA); ’Collections of formulae in
automatic control’; calculator that is not programmed in advance.

Results

The results will be posted on the course home page and the graded exam will be
displayed on Tuesday January 9, in lab C, Dept of Automatic Control. at 12.30-
13.00. Thereafter, exams will be archived at the Automatic Control Department in
Lund and at BUAA, Beijing, respectively.

Solutions
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1. A simple model for an electric generator is given by

Jθ̈(t) = Md(t) + M(t),

where θ(t) is the angle of the generator shaft, J is the moment of inertia, Md(t)
is the torque driving the generator and M(t) is a torque due to electro-magnetic
phenomena. A simplified expression for the torque M is

M(t) = −fθ̇(t) + K sin(ω0t − θ(t)),

where the first term describes energy losses in the generator, and the second
term describes interaction with the rest of the power grid. The sign of θ(t)−ω0t
determines if the generator is delivering or receiving power from the rest of the
grid, and this value will be our measurement.

a. Let x1(t) = θ(t) − ω0t and show that the system can be written on the state-
space form

ẋ1(t) = x2(t),

ẋ2(t) = −b sin(x1(t)) − ax2(t) + u(t),

y(t) = x1(t),

where the system input is of the form u(t) = Md(t)−c
d . Express a, b, c and d in

terms of the non-negative constants f, ω0, K and J . (0.5 p)

b. Find all stationary points (x0
1, x0

2, u0, y0) for the system. (0.5 p)

c. Linearize the system at the stationary point corresponding to x0
1 = π/2. Is the

linearized system asymptotically stable, stable or unstable? (1 p)

Solution

a. We define x1 = θ − ω0t, x2 = ẋ1 = θ̇ − ω0 and get

ẋ1(t) = x2(t),

ẋ2(t) = −K

J
sin(x1(t)) − f

J
x2(t) +

Md(t) − fω0

J
︸ ︷︷ ︸

u(t)

,

y(t) = x1(t).

Comparing coefficients gives

a = f/J, b = K/J, c = fω0, d = J.

b. In stationarity we have

0 = x0
2,

0 = −b sin(x0
1) − ax0

2 + u0,

y0 = x0
1,
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which is equivalent to

x0
2 = 0, u0 = b sin(x0

1), y0 = x0
1.

Thus there are infinitely many stationary points for this system. All stationary
points can be expressed as

(x0
1, x0

2, u0, y0) = (α, 0, b sin(α), α),

for some α ∈ R.

c. The choice x0
1 = π/2 corresponds to the stationary point (x0

1, x0
2, u0, y0) =

(π/2, 0, b, π/2). Computing all partial derivatives and inserting the stationary
point yields

[ ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

] ∣
∣
∣
∣
∣
x=x0,u=u0

=

[

0 1

0 −a

]

,

[ ∂f1

∂u
∂f2

∂u

] ∣
∣
∣
∣
∣
x=x0,u=u0

=

[

0

1

]

,

[ ∂g
∂x1

∂g
∂x2

]

∣
∣
∣
∣
x=x0,u=u0

= [ 1 0 ] ,

∂g

∂u

∣
∣
∣
∣
x=x0,u=u0

= 0,

and the linearized system is thus

[

∆ẋ1(t)

∆ẋ2(t)

]

=

[

0 1

0 −a

]

︸ ︷︷ ︸

A

[

∆x1(t)

∆x2(t)

]

+

[

0

1

]

︸︷︷ ︸

B

∆u(t),

∆y(t) = [ 1 0 ]
︸ ︷︷ ︸

C

[

∆x1(t)

∆x2(t)

]

.

To determine stability, we compute the poles of the system, which are given
by the eigenvalues λ of the matrix A:

det(λI − A) = 0 ⇔ λ(λ + a) = 0.

Thus the poles are given by λ1 = 0 and λ2 = −a. If a > 0, we have one pole
in the LHP and one pole on the imaginary axis. The system is therefore stable
(but not asymptotically stable). However, if a = 0 there is a double pole at
the origin, λ = 0 , which implies an unstable system.

2. Consider the feedback system in Figure 1, where a P-controller is used to control
the process P (s). The process P (s) has exactly one pole in the origin. Assume
that K has been chosen such that the feedback system is asymptotically stable.

a. Consider a unit step reference signal r, i.e.,

r(t) =

{
0, t < 0,

1, t ≥ 0.
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Figur 1 Feedback system in problem 2.

Determine the size of the stationary error. (1 p)

Hint: The process can be written as P (s) = P ∗(s)1
s , where P ∗(s) is a transfer

function with no poles or zeros in the origin.

b. Consider a unit step load disturbance d. Determine the size of the stationary
error. (1 p)

c. Assume now that P (s) = 1/s. Find a new controller (i.e., not necessarily a
P-controller) that satisfies:

• The feedback system is asymptotically stable.

• The stationary error is zero when the reference r is a unit step.

• The stationary error is zero when the load disturbance d is a unit step.

Clearly show that your new controller satisfies the specifications. (1 p)

Solution

a. We use the hint and consider P (s) = P ∗(s)1
s . The transfer function from

reference signal r to control error e is

Gr→e(s) =
1

1 + P (s)K
=

s

s + P ∗(s)K
.

The unit step reference signal has the Laplace transform R(s) = 1/s. Since the
feedback system is asymptotically stable we can use the final value theorem

lim
t→∞

e(t) = lim
s→0

sGr→e(s)
1

s
= lim

s→0

s

s + P ∗(s)K
= 0.

Thus the stationary error is zero.

b. The transfer function from disturbance d to control error e is

Gd→e =
−P (s)

1 + P (s)K
=

−P ∗(s)

s + P ∗(s)K
.

The disturbance is D(s) = 1
s . Since the feedback system is asymptotically

stable, we can use the final value theorem

lim
t→∞

e(t) = lim
s→0

sGd→e(s)
1

s
= lim

s→0

−P ∗(s)

s + P ∗(s)K
= − 1

K
.

Thus the stationary error is −1/K.
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Figur 2 System response of G(s) in problem 3.

c. A P-controller can be used to achieve an asymptotically stable feedback system,
but as seen in b. it will not be able to handle load disturbances. To achieve zero
stationary error for both reference and disturbance we need to introduce an
integrator in the controller. Consider e.g. the PI-controller K(1 + 1/s), which
gives the characteristic equation:

s2 + Ks + K = 0,

which has roots in the LHP as long as K > 0. Thus the closed-loop system is
asymptotically stable for K > 0. Also, we get zero stationary errors since:

Gr→e(s) =
s2

s2 + Ks + K
, =⇒ Gr→e(0) = 0,

Gd→e(s) =
−s

s2 + Ks + K
, =⇒ Gd→e(0) = 0.

3. A linear system G(s) has at times t < 0 the stationary output y(t) = 0. At
time t = 0 we apply the following input signal u to the system:

u(t) = 10 sin(3t), t ≥ 0.

The output y of the system for t ≥ 0 is shown in Figure 2. Also, a Nyquist
diagram of G(s) is plotted in Figure 3. Assume that the system is of the form:

G(s) =
1

sT + 1
e−Ls.

a. Determine the parameters T and L. (1 p)

b. Sketch the step-response y(t), t ≥ 0, of G(s). In particular, make sure to mark
out L and L+T on the time axis, and the initial and final value of y(t) in your
sketch. (1 p)
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Figur 3 Nyquist diagram of the system G(s) for problem 3.

c. We wish to introduce feedback to control the system. Can we design a P-
controller such that the stationary error is less than 0.3 when making a unit
step in the reference signal? (2 p)

Solution

a. The parameters can be determined from the output signal in Figure 2. First
we note that the output signal has a delay of 1 s, which immediately gives
L = 1. Secondly, after the transients have died out, we note that the output
has an amplitude of 8, when the input is a sinusoid of frequency 3 rad/s and
amplitude 10. Thus we know that:

|G(3i)| =
8

10
=

4

5

Since we know the form of G(s), we get:

|G(3i)| =
1√

9T 2 + 1
=

4

5
=⇒ T =

1

4
,

where the solution T > 0 is chosen since the system is stable. In summary,
T = 1/4 and L = 1.

b. The system is a stable first-order system with a time-delay. After L = 1s, it
will rise from the initial value 0 to the final value of 1 (static gain G(0) = 1)
without overshoot. Also, we have y(L + T ) ≈ 0.63. With this knowledge, we
can sketch the step response, see Figure 4. We can also use the inverse Laplace
transform to get the time-response explicitly:

L−1[
1

sT + 1
e−Ls 1

s
] =







1 − e−(t−L)/T , t > L

0, t ≤ L
=







1 − e−4(t−1), t > 1

0, t ≤ 1
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Figur 4 Step response of system G(s) for problem 3b.

c. Let the P-controller have the gain K. The closed-loop transfer function from
reference signal r to control error e is then given by:

Gr→e(s) =
1

1 + G(s)K
.

Assuming that the closed-loop system is stable, the final-value theorem gives
the stationary error when the reference signal is a unit step:

lim
t→∞

e(t) = lim
s→0

sE(s) = Gr→e(0) =
1

1 + G(0)K
=

1

1 + K
.

Thus, to get a stationary error smaller than 0.3 we require:

1

1 + K
< 0.3 ⇔ 7

3
< K.

However, we note in the Nyquist diagram in Figure 3 that the gain margin of
G(s) is approximately 1/0.84 ≈ 1.2 < 7/3. Thus the closed-loop system will be
unstable for K > 1.2 and we can’t achieve the specification on stationary error
being less than 0.3.

4. A system is given by the state-space model

ẋ =






−1 2 0

1 0 1

0 0 −1




x +






1

0

0




u

y = [ 1 0 0 ] x

a. Calculate the controllability matrix. Is the system controllable?
If not, which are the controllable states? (1 p)

b. Find a control law u = −Lx + lrr so that the closed-loop poles are in −1, −2
and −3. (2 p)

7



c. What restriction do we have to consider when placing the closed loop poles?
(1 p)

Solution

a.

Wc = [ B AB AAB ] =






1 −1 3

0 1 −1

0 0 0






The matrix does not have full rank (last row is zero), so the system is not
controllable.
The controllable states are given by the columns of Wc. It is clear that x1 and
x2 are controllable, i.e., the controllable states are

x = [ α β 0 ]T ,

for any α, β.

b. With L = [ l1 l2 l3 ], we have

sI − A + BL =






s + 1 + l1 −2 + l2 l3

−1 s −1

0 0 s + 1






with determinant

(s + 1 + l1)s(s + 1) − (−2 + l2)(−1)(s + 1)

=s3 + s2(1 + l1 + 1) + s(1 + l1) + s(−2 + l2) + (−2 + l2)

=s3 + s2(2 + l1) + s(l1 + l2 − 1) + (−2 + l2)

Equating to

(s + 1)(s + 2)(s + 3)

=s3 + s2(3 + 2 + 1) + s(2 + 3 + 6) + 6

=s3 + 6s2 + 11s + 6

gives (−2 + l2) = 6 ⇒ l2 = 8, (l1 + l2 − 1) = 11 ⇒ l1 = 4. And 2 + l1 = 6. So
L = [ 4 8 l3 ], where l3 can be anything.

c. Since the system is not controllable, we are not able to place the poles arbitra-
tily. As seen in the first line of the calculations for the determinant, we will
always have a pole in −1. This can also be seen in the state space equations
for the third state.
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5. A system with transfer function

GP =
15

s(0.1s + 1)

is controlled (in a standard negative feedback loop) by a P–controller with
gain K = 1. However, the closed-loop system is considered to be too slow and
you want to make it twice as fast without getting a decreased phase margin.
Dimension a phase-advanced link ( a so-called lead link)

GK = KKN
s + b

s + bN

such that the cross-over frequency ωc increases a factor 2 without decreasing
the phase margin. The Bode diagram for GP is shown in Figure 5. (2.5 p)
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Figur 5 Bode diagram for Problem 5

Solution From the Bode diagram the current cross-over frequency can be found to
be ωc ≈ 10rad/s. As alternative it can also be calculated as

arg G(iωc) = arg 15 − (arg(iωc) + arg(iωc0.1 + 1))

arg G(iωc) = 0 − 90◦ − arctan(0.1ωc)

arg G(iωc) ≈ −135◦

and
φm = 180◦ + arg G(iωc) ≈ 45◦

Thus, we would like to double ωc = 10 to ω∗

c = 20 while preserving the phase
margin. From the Bode diagram (or with corresponding calculations as above)
we find that we need to increase the phase approximately 18◦ at ω∗

c to keep
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the same phase margin. From the collection of formulae one can see the N = 2
is enough.

To get the maximum phase increase exactly at ω∗

c you put

b
√

N = ω∗

c

which gives b = 14. Now one should adjust the total gain so that the cross-over
frequency becomes ω∗

c .
|GK(iω∗

c )GP (iω∗

c )| = 1

In this expression everything is know except KK . Solving the equation gives
KK = 2 and the phase advanced link (the lead link) becomes

GK = KKN
s + b

s + bN
= 4

s + 14

s + 28

6. In most countries around the world, the frequency in the power sockets is 50Hz
i.e., 100π rad/s. Measuring this would result in a signal of the form

y(t) = V sin(ωt) + n(t),

where ω = 100π, V is the peak voltage, and n is measurement noise.

This signal can be modeled as being generated by the system

ẋ(t) =

[

0 100π

−100π 0

]

x(t)

y = [ 1 0 ] x(t) + n(t).

To have a good estimate of the peak voltage V at all times, it is nessesary to
know both states in the system.

a. Design a Kalman filter to estimate the two states. Place both of the two poles
in −100π and determine the corresponding vector K. (1 p)

b. The effect of the noise n on the error of the estimate x̃ = x − x̂ can be written
as

˙̃x(t) = (A − KC)x̃(t) − Kn(t),

where A is the system matrix above, and K the Kalman gain vector. We do
not want the noise to affect the estimation error too much. If we approximately
know the frequency of the noise n, describe how we then should reason on where
to place the poles for the Kalman filter with respect to the noise frequency.
(You do not need to calculate any value for K in this subproblem). (1 p)

Solution

a. We have

sI − (A − KC) =

[

s + k1 −100π

100π + k2 s

]

with characteristic equation s2 + sk1 + 1002π2 + 100πk2.
Equating with (s + 100π)2 = s2 + 200πs + 1002π2 gives k1 = 200π, k2 = 0.
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b. We want the transfer function from n to x̃ to be small. We should therefore
make sure to place the two poles at frequencies well below the frequency of the
noise.

7. You are working as a consultant and are assigned to control a process with
dynamics

P (s) =
1

s − 1
.

During a design meeting, your colleague suggests the controller

C(s) =
s − 1

s + 1
.

a. Will the closed-loop system from reference to process output be stable with
the proposed controller? (1 p)

b. The proposed controller has a zero at s = 1, which cancels the process pole.
What practical problem could this type of unstable pole-zero cancellation cau-
se? Explain, motivated by calculations for the particular example. (1 p)

c. Design a controller C(s), which stabilizes the transfer function from reference
to process output, without cancelling the unstable process pole. (1 p)

Solution

a. The open-loop transfer function becomes

Go(s) = P (s)C(s) =
1

s + 1
,

yielding the closed-loop transfer function

Gyr(s) =
Go(s)

1 + Go(s)
=

1

s + 2
.

The closed-loop system from reference r to process output y is asymptotically
stable since the only pole of Gyr(s) lies at s = −1, which is strictly in the
left half plane. (However, the system exhibits poor reference tracking, since
Gyr(0) = 1/2 6= 1.)

b. By cancelling the unstable process zero with a controller pole, we make the zero
dynamics uncontrollable from the reference r. The zero dynamics are, however,
still observable from the process output y and (obviously) controllable from the
control signal u. The transfer function from control signal (process input) u to
process output y becomes

Gyu(s) =
P (s)

1 + Go(s)
=

s + 1

(s − 1)(s + 2)
.

It has an unstable (right half plane) pole at s = 1, meaning that an additive
load disturbance step, introduced at the process input, would drive the process
output y unstable.

Another problem is that small deviations in process or controller dynamics
could, for instance P (s) = 1/(s − 1 − ǫ) with ǫ 6= 0 results in the closed-
loop from r to y becoming unstable. Such small deviations are almost always
impossible to avoid in practice, due to for example component manufacturing
tolerances.
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Figur 6 Illustration of the aliasing phenomenon. The figure shows the actual signal s and
its alias sa.

c. There are several approaches to stabilizing the dynamics. One approach is to
introduce the state x = y, resulting in the state space representation ẋ = x+u.
Introducing the state feedback u = −kx yields the closed-loop dynamics ẋ =
(1−k)x. Choosing k > 1 results in the closed loop system matrix having strictly
negative eigenvalue, making the closed-loop asymptotically stable.

Since y = x, our state feedback controller is in fact a P controller u = −ky with
gain k. No pole-zero cancellation takes place since the controller lacks zeros.

Comment: Since we have full access to the state through y, we can make a full
state feedback design without introducing an observer. The system is further-
more controllable, since the controllability matrix Wc = B = 1 6= 0 has full
rank. This means that we can place the closed-loop controller pole arbitrarily.

8. Today, almost all controllers are implemented in computers, i.e. the signals
must be discretized. In order to do this, a sampling frequency, ωs, is selected.
The sampling frequency introduces an upper bound, referred to as the Nyquist
frequency ωN , on how high frequencies that are visible for the controller.

ωN =
ωs

2

In other words we must keep the sampling frequency at least twice as high as
the highest frequency relevant to the controller, if not we will have the effect
of aliasing. Explain the aliasing phenomena by using a figure. (1 p)

Solution The phenomena is visualized in the figure fig:aliasing. Due to the relatively
low sampling frequency, the controller will not obtain the signal s, but rather
the signal sa, which has a significantly lower frequency.

9. A common structure for PID-controllers is:

U = K

(

(bR − Y ) +
1

sTi
E − sTd

1 + sTd/N
Y

)

Give the formula for a corresponding discretized PID controller, and show how
you determined the discretized formula. (1.5 p)

Solution

a. The discrete control signal is given by

u(kh) = P (kh) + I(kh) + D(kh)

i.e., a sum of the proportional, integral and derivative parts. The sampling
interval is denoted h and k is an integer.
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• P-part:
P (kh) = K(br(kh) − y(kh))

• I-part: Approximate the integral by replacing it with a sum.

I(kh) = I(kh − h) +
Kh

Ti
e(kh)

• D-part: Approximate the derivatives by replacing them by differences.

D(kh) =
Td

Td + Nh
D(kh − h) − KTdN

Td + Nh
(y(kh) − y(kh − h))

13



10. The block diagram in Figure 7 shows a controller with an “automatic offset
adjustment”. Calculate the transfer function Ge→u(s) for the controller. What
“familiar controller” is it? (2 p)

Σ

Σ

ue

−1

K

1
T s

Figur 7 Block diagram for the controller in Problem 10.

Solution The signal u is given by the equation

U(s) = KE(s) +

(
1

T s

1 + 1
T s

)

U(s)

⇐⇒ U(s) = KE(s) +

(
1

Ts + 1

)

U(s)

⇐⇒ U(s)

(

1 − 1

Ts + 1

)

= KE(s)

⇐⇒ U(s) = K

(
Ts + 1

Ts

)

E(s)

The controller is a PI–controller.

Good luck!
——————————————————————-
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