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Previous lecture: State feedback

Feedback signal as a linear combination of the states:

u=—hxy — bxo — - — l,x, = —Lx

Gives closed loop system matrix

Ay =A—BL

If the system is controllable, we can place closed loop poles
(eigenvalues of A — BL) arbitrarily

One big problem with this approach. .. typically not all states x; are
measured



This lecture: Observers

Key idea:
System model 4 output signal y + control signal v — Estimate X of x

Process




The Kalman filter

developed c. 1960 by Used in the Apollo navigation
Rudolf Kalman (1930-2016) computer

Applications: automatic control, radar tracking, medical imaging,
seismology, battery charge estimation, economics, online parameter
estimation etc, etc
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This lecture: Observers

Key idea:
System model 4 output signal y + control signal v — Estimate X of x

Process

We will design observers using pole placements.

Similar to what we did for state feedback.
Dual problems, i.e. "Same, same, but different"



Observability

Is it always possible to estimate the state of a system from u and y?
Yes — if the system is observable
Definition: A state vector xo # 0 is not observable if the output is

y(t) = 0 when the initial state vector is x(0) = xp and the input is given
by u(t) = 0. A system is observable if it lacks non-observable states.



Test for observability

Test for observability: The observability matrix

C
CA

CA-1

has n (= number of states), linearly independent columns

Note that:

e Observability only depends on A and C

e Non-observable states xp satisfy the equation W,xg =0



Example: Observability of water tanks (1/2)

X1 X2

_*_
State-space model:
-1
X
0 1
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Example: Observability of water tanks (1/2)

x1 X2
1 + — 2
State-space model:
-1 0
= X
0o -1
y = [1 71} X
Observability matrix:
C 1 -1
W = =
°|CA i il ]

W, has rank 1 = system is not observable 8



Example: Observability of water tanks (2/2)

The non-observable states satisfy W,xq = 0, i.e. the non-observable
states are given by

X0 =

X9 15 15

N




State-estimation: Notation

Want to estimate the state x of system

d
—x = Ax + Bu
dt
Introduce
e X - estimated state vector

e X — x — X - estimation error

10



State-estimation: Via simulation

Let the state estimate evolve according to

d

The estimation error evolves according to

Lx= 2 (x=2)

e T d
= Ax + Bu — (A% + Bu)
= A(x — %) = A%

Estimation error converges to 0 if A is stable
e Convergence rate depends on eigenvalues of A

e Requires perfect model and no load disturbances

Information in measured signal y is not used
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State-estimation: Via observer (1/2)

Let the state estimate take y into account

d
—X=AR+Bu+K(y—y)
dt

y=Cx
or

d
E)?z(A—KC))?—%-Bu-i-Ky
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State-estimation: Via observer (1/2)

Let the state estimate take y into account

d
X=AR+Bu+K(y—y)

dt
y=Cx
or d
d— =(A— KCO)R + Bu+ Ky
The estimation error evolves according to
d. d
P (x — %)

= Ax + Bu — ((A — KC)X + Bu + KCx)
=(A—KC)(x—%)=(A—-KO)x
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State-estimation: Via observer (1/2)

Let the state estimate take y into account

d
X=AR+Bu+K(y—y)

dt
y=Cx
or d
d— =(A— KCO)R + Bu+ Ky
The estimation error evolves according to
d. d
P (x — %)

= Ax + Bu — ((A — KC)X + Bu + KCx)
=(A—KC)(x—%)=(A—-KO)x

By choosing K we can affect convergence speed of the state estimate

12



State-estimation: Via observer (2/2)

%; = (A - KC)%

Poles are placed by choosing K, same as for state-feedback

Large K, fast poles of A— KC

e Fast convergence of state estimation

e Sensitive to measurement noise
Small K, slow poles of A— KC

e Slow convergence of state estimate

e sensitive to load disturbances and modeling errors

As always: Trade-off between robustness and performance
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Inverted pendulum example (1/2)

Process:
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Inverted pendulum example (2/2)

Simulation from initial state p(0) = —0.6, ¢(0) = 0.4
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Process

Output Feedback

Process: ;
X=AR+Bu+K(y—-9)
X = Ax + Bu S 2
y:CX
y:CX
U:/rr_L)?
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Output Feedback (2/2)

Process:
x = Ax + Bu
y = Cx

Introduce state-vector extended with estimation errors x,

Kalman filter + Controller:
X=A%+Bu+ K(y —9)
y=Cxk

u=Ilr—LX

Closed loop state-space equations become:

[:

X

X

A—-BL
0

|

BL
A—KC

+
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Ouput Feedback: Closed loop dynamics

Characteristic polynomial of closed loop system:

det (

Possible to place poles for state feedback and the observer

A—-BL BL
0 A—KC

) = det(sl — (A — BL)) - det(s — (A — KC))

independently!!

18



Ouput Feedback: Closed loop dynamics

Characteristic polynomial of closed loop system:

det (

Possible to place poles for state feedback and the observer

A—-BL BL
0 A—KC

) = det(sl — (A — BL)) - det(s — (A — KC))

independently!!

Can show that the transfer function r — y is
Grsy(s) = C(sl — (A— BL))"'BI,

l.e. same as for state feedback!
Reason: After convergence of the Kalman filter, estimated state equals
true state. (Problems with load disturbances and modeling errors)
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Ouput Feedback: Closed loop dynamics

Characteristic polynomial of closed loop system:

det (

Possible to place poles for state feedback and the observer

A—-BL BL
0 A—KC

) = det(sl — (A — BL)) - det(s — (A — KC))

independently!!

Can show that the transfer function r — y is
Grsy(s) = C(sl — (A— BL))"'BI,

l.e. same as for state feedback!
Reason: After convergence of the Kalman filter, estimated state equals
true state. (Problems with load disturbances and modeling errors)

Rule of thumb: Observer poles twice as fast as state feedback poles
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Cancellation of Poles and Zeros

r 1+8Ti

K
sT;

1+sT

Process Gp(s) = T5sT

, Pl-controller Gg(s) = K (1 +

1
ST,'
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Cancellation of Poles and Zeros

r 1+sT; 1 y
K
sT; 1+sT

1
Process Gp(s) Pl-controller Gg(s) = K (1 + )

T 1+sT’ ST
Many tuning rules for Pl-control specify T; = T, resulting in

K(1+sT) 1 _ K
sT  (L+sT) sT

open loop system Gy(s) =
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Cancellation of Poles and Zeros

r 1+sT; 1 y
K
sT; 1+sT

1
Process Gp(s) Pl-controller Gg(s) = K <1 + )

T 1tsT’ sT;

Many tuning rules for Pl-control specify T; = T, resulting in

K(1+sT) 1 K
open loop system Gy(s) = 7 a5 =—
closed loop system G(s) K

m =
P K+sT
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Cancellation of Poles and Zeros

r 1+ STi 1 y
K
sT; 1+sT

1
Process Gp(s) Pl-controller Gg(s) = K <1 + )

T 14T ST,

Many tuning rules for Pl-control specify T; = T, resulting in

K(1+sT) 1 K
open loop system Gy(s) = 7 a5 =—
closed loop system G(s) K

m =
P K+sT

NOTE: pole/zero cancellation in Gy(s)
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Cancellation of Poles and Zeros

1+sT

K K
open loop system Gy(s) = T closed loop system G(s) = Kt

Resulting in the transfer functions

K K
= K1) T s a7

Y(s) L(s)

NOTE: the pole/zero cancellation shows up in the load-disturbance
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Cancellation of Poles and Zeros

Transfer functions
K K
R
&)+ ks Tsn

L(s)

NOTE: the pole/zero cancellation shows up in the load-disturbance.
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