Lec 5: Frequency Domain Stability Analysis

The Nyquist Criterion. Stability Margins. Sensitivity
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Stability is Important!




Stability Margins are also Important!
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Harry Nyquist (1889-1976)

Nilsby, Sweden — North Dakota — Yale — Bell Labs

e Nyquist's stability criterion
e The Nyquist frequency
e Johnson-Nyquist noise



Nyquist’s Criterion — A Motivation
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With switch in position 2, after transients (Gp stable):

e(t) = —|Go(iw)]| sin(wt + arg Go(iw))
= | Gp(iw)|sin(wt + arg Go(iw) + 7)
Find wo such that arg Go(iwp) = —.

Also assume |Gy (iwp)| =1
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Nyquist’s Criterion — A Motivation
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e(t) = sinwot 1

Oscillation will continue in closed loop. We have a marginally stable
system.

Seems likely that

e |Gy(iwp)| < 1 = Oscillation damped out (Asymptotic stability)
e |Go(iwp)| > 1 = Oscillation increases (Instability)



Bode and Nyquist diagrams

We most often plot Bode and Nyquist diagrams for “the open-loop
system” Go (aka loop gain L)

L= Go = GrG,
and from this predict how the closed-loop system
GrGp
1+ GrGp
will behave.
y
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Nyquist’s Criterion

tim Go(iw)

-1 Re Go(iw)
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Nyquist’s Criterion (simplified version):

Assume Gy(s) is stable.

Then the closed loop system (simple negative feedback) is stable if the

point —1 lies to the left of G(iw) as w goes from 0 to oc. 6
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Stability for closed-loop system

Crossing with negative real axis:

Phase = -180 deg = Im {Go(iwp)} = 0 = wp = V2

i) = -3 K

. 6
Stable if K < 6.

Two poles in right half-plane if K > 6.



Nyquist’s criterion — Some comments

Gives insight

Easy to use, only requires frequency response

Slightly complex to prove

e Version of Nyquist Criterion also works if Go(s) is unstable.



Nyquist curves of four (open-loop stable) systems.

Which systems are stable in closed loop (simple negative feedback)?
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Stability Margin
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Amplitude margin: "Gain increase without instability"

Phase margin: "Phase decrease without instability"
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Stability Margin

tim Go(iw)
PR
/’,’ \\\\
4 .
4 \
) 1/An 8
1
1 Re Go(iw)
® —
|\ ¢m l’
AY ’
\ 1
Y s
AY 4
N 4
’
~ ’
N\h-___"‘
Go(l'wc)

Important with sufficient stability margins for good control performance

Rule of thumb: A, > 2, ¢, > 45°
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Delay Margin

Augment open-loop transfer function Go(s) with a delay L:
GF®(s) = e L Gy(s)
We have
|Go* (iw)| = |Go(iw)]

arg Gg®(iw) = arg Go(iw) — wl
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Delay Margin

Augment open-loop transfer function Go(s) with a delay L:
GF®(s) = e L Gy(s)
We have
|Go* (iw)| = |Go(iw)]
arg Gg®(iw) = arg Go(iw) — wl

Same cross-over frequency w. as Gy, so new phase margin

new

Pm = SOm_WcL
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Delay Margin

Augment open-loop transfer function Go(s) with a delay L:
GF®(s) = e L Gy(s)
We have
|Go* (iw)| = |Go(iw)]
arg Gg®(iw) = arg Go(iw) — wl

Same cross-over frequency w. as Gy, so new phase margin

new

(pm =¥m — o‘)CL
For stability the delay L must be smaller than

Lm:ﬂ"
We
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Amplitude & Gain Margins in Bode Plots
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wc is called the cross-over frequency.
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The Sensitivity Function

The closed-loop transfer function

1

) = T3 G516 ()

is called the sensitivity function.

Gives much information about closed-loop control performance.
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Interpretation of Sensitivity Function (1/3)
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Interpretation of Sensitivity Function (1/3)
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Interpretation of Sensitivity Function (1/3)

Yoi(s) = Gp(s)L(s) +1- N(s)

GP(S) 1

Ya(s) = WL(S) + 1+ Ggr(s)Gp(s)

N(s)

The sensitivity function quantifies the effect of feedback.

|S(iw)| < 1 = disturbances with frequency w are reduced by controller
|S(iw)| > 1 = disturbances with frequency w are magnified by controller

Typically the controller will always increase disturbances at some
frequencies. Preferably not at frequencies with much disturbances.
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Interpretation of Sensitivity Function (2/3)

05

Re

1/]5(iw)| is the distance between the Nyquist curve and —1.

M = sup,, |S(iw)| can be used to quantify the stability margin.
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Interpretation of Sensitivity Function (3/3)

The sensitivity function quantifies closed-loop sensitivity to modeling
errors. Let Gp be our process model.

G} = Gp(1+ AG)

Gg is the actual process dynamics, AG is the relative modeling error .
Can show that

Y0=(1+5°AG6) Y
S0 is the sensitivity function of the real system.

YO Y

_ <o
v =S°AG
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Example: Internet Congestion Co

Admission
Router Control A ImL(io)
d wo[ = b
be(s) - Gph(s) N
Ve s N
Y -~ N ReL(i
Link Link ' oL
67117“' e*’[f.\' -
delay delay -0.5 &
[ TCP
w q
N qu(s) ~

See Example 9.5 in [Astrém & Murray] for details.
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Example: Operational Amplifier

Z Z
vy ZZ (- Zl v \%)
N — 7 —=(x Zi+7 —G(s)
o o
(a) Amplifier circuit (b) Block diagram

Transfer function from v; to vo;
_é ZlG(Iw)/(Zl+ZQ)
Z1 1+ Z1G(iw) /(41 + 22)
~ —Z/Z; (If closed loop is stable, and w within bandwidth)

GC/(iw) =

What about stability? Just look at Nyquist curve of
ZlG S|
Go(s) = (s)
41+ 2
Don't need model of the op-amp, just measured transfer function!

(Power of Nyquist's Criterion) 20
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Cauchy’s argument variation principle

How many zeros does a rational function f(-) have in a region C?

1
EASGC argf(s)=P—-N
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Cauchy’s argument variation principle

How many zeros does a rational function f(-) have in a region C?

1
EASGC argf(s)=P—-N

To determine the number of roots in the right half plane we choose the
closed curve C in the following way.

~
/

Half-circle around the origin avoids singularities on the boundary
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Stability for feedback

Go

v

The closed-loop system is asymptotically stable if and only if all zeros to
1+ Go(S)

are in the left half-plane.
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Cauchy’s argument variation principle for feedback

N

N = # zeros for 1 4+ Go(s) inside curve C
P = # poles for 1 + Go(s) inside curve C

Argument variation principle gives

P — N = # rev. around origin for 1 + Gy(s), s € C

= # rev. around —1 + 0/ for Go(iw), w € R "



Nyquist criterion

If Go(s) is stable (P = 0), then the closed-loop system [1 + Go(s)] ™! is
stable (N = 0) if and only if the Nyquist-curve G(iw) does NOT encircle
—1+0/.

The difference between the number of unstable poles in Gy(s) and the
number of unstabila poles in [1 + Go(s)] ! is equal to the number of
turns of the Nyquist-curve around —1 + 0j.
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