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Introduction



The Simple Feedback Loop

Controller Process
ur y

Disturbances

• Reference value r

• Control signal u

• Measured signal/output y

The problem/purpose: Design a controller such that the output follows

the reference signal as good as possible

Note on terminology: Process, Controlled system, Plant etc...
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The Feedback Loop

Controller Process
ur y

Disturbances

• Reference value r

• Control signal u

• Measured signal/output y

The problem/purpose: Design a controller such that the output follows

the reference signal as good as possible despite disturbances and

uncertainties in process.
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Find the Control Problem - 1

• Reference value - Desired temperature

• Control signal - E.g., power to the AC, amount of hot water to the

radiators

• Measured value - The temperature in the room
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Find the Control Problem - 2

• Reference value - Desired speed

• Control signal - Amount of gasoline to the engine

• Measured value - The speed of the car
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Find the Control Problem - 3

• Reference value - Number of bacterias

• Control signal - “Food” (sugar and O2)

• Measured value - E.g., pH or oxygen level in the tank
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Feedforward

Some systems can operate well without feedback, i.e., in open loop.

Controller Process
ur y

Disturbances

Examples of open loop systems?
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Feedforward vs. Feedback

Benefits with feedback:

• Stabilize unstable systems

• The speed of the system can be increased

• Less accurate model of the process is needed

• Disturbances can be compensated

• WARNING: Stable systems might become unstable with feedback

Feedforward and feedback are complementary approaches, and a good

controller typically uses both.
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The PID Controller



The Error

The input to the controller will be the error, i.e., the difference between

the reference value and the measured value.

e = r − y

Controller Process
ur y

New block scheme:

Controller Process
u

+
r e y

−1
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On/Off Controller

u =

{
umax if e > 0

umin if e < 0

e

u

umin

umax

Usually not a good controller. Why?
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The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

u =


umax if e > e0

u0 + Ke if − e0 ≤ e ≤ e0

umin if e < −e0

e

u

umin

umax

−e0 e0

u0

P-part comes from proportional (here affine) to the error e.
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The P Part
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P-controller:
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The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

u =


umax if e > e0

u0 + Ke if − e0 ≤ e ≤ e0

umin if e < −e0

The control error

e =
u − u0
K

To have e = 0 at stationarity, either:

• u0 = u (What if u varies?)

• K =∞ (On/off control)
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The I Part

Idea: Adjust u0 automatically to become u.

PI-controller:

u(t) = K

(
1

Ti

∫ t

e(τ)dτ + e

)
Compared to the P-controller, now

u0(t) =
K

Ti

∫ t

e(τ)dτ

At stationary e = 0 if and only if r = y .

PI controller achieves what we want, if performance requirements are not

extensive.
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Example of integral action needed — mini-problem (5 min)

(a) Argue why there will be a stationary error if we just use P-control; i.e.,

u(t) = K · (href − h)?

(b) How will the stationary error change with the value of the gain K?

(c) What happens if we add integral action with very small integral gain
K

Ti
?

Sketch the behaviour.
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Answer mini-problem

Note: This is not a strict answer and you need to make reasonable

assumptions about the process yourself for this to hold.

(a) Argue why there will be a stationary value if we just use P-control; i.e.,

u(t) = K · (href − h)?

If h = href the control signal u(t) = K · (href − h) = 0 and the motor

shuts off/fan stops spinning and the ball will fall. The process will

finally settle to an equilibrium with a positive stationary error

e = href − h such that the corresponding control signal will keep the

ball at a fixed error (e) from the reference.

(b) How will the stationary value change with the value of the gain K?

The control signal to the fan motor u = K · e is the product of the

gain and the error; for a higher gain K you can reach stationarity

with a smaller stationary error e.
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Answer mini-problem, cont’d

(c) What happens if we add integral action with very small integral gain
K

Ti
?

Sketch the behaviour.

Note how the height of the ball (slowly) approaches the desired reference

(as the integral part makes the control action increase as long as there is

an error).

See also separate simulink example/demo.
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Answer mini-problem, cont’d

(c) What happens if we add integral action with very small integral gain
K

Ti
?

Sketch the behaviour.

Note how the height of the ball (slowly) approaches the desired reference

(as the integral part makes the control action increase as long as there is

an error).

See also separate simulink example/demo.
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The D Part

Idea: Speed up the PI-controller by “looking ahead”/”predicting future”.

PID-controller:

u = K

(
e +

1

Ti

∫ t

e(τ)dτ + Td
de

dt

)

e

Time
t

P

I

e

Time
t

P

I

Same P- and I-part

in both cases, but

very different be-

havior of error. The

derivative of e con-

tains a lot of infor-

mation to utilize.

• P acts on the current error,

• I acts on the past error,
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Idea: Speed up the PI-controller by “looking ahead”/”predicting future”.

PID-controller:

u = K

(
e +

1

Ti

∫ t

e(τ)dτ + Td
de

dt

)
e

Time
t

P

I
D

e

Time
t

P

I
D

Same P- and I-part

in both cases, but

very different be-

havior of error. The

derivative of e con-

tains a lot of infor-

mation to utilize.

• P acts on the current error,

• I acts on the past error,

• D acts on the ”future”/predicted error.
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State Space Models



State Space Models

Consider a linear differential equation of order n

dny

dtn
+ a1

dn−1y

dtn−1
+ . . .+ any = b0

dnu

dtn
+ b1

dn−1u

dtn−1
+ . . .+ bnu

For linear systems the superposition principle holds:

u = u1 =⇒ y = y1 and

u = u2 =⇒ y = y2 implies

u = c1 · u1 + c2 · u2 =⇒ y = c1 · y1 + c2 · y2

and vice versa; We can consider the output from a sum of signals by

considering the influence from each component.

Q: Why is this not true for nonlinear systems? Example?
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State Space Models

Consider a linear differential equation of order n

dny

dtn
+ a1

dn−1y

dtn−1
+ . . . + any = b0

dnu

dtn
+ b1

dn−1u

dtn−1
+ . . . + bnu

An alternative to ONE differential quation of order nth is to write it as a

system of n coupled differential equations, each or order one.

General State space representation:

ẋ1 = f1(x1, x2, ...xn, u)

ẋ2 = f2(x1, x2, ...xn, u)

...

ẋn = fn(x1, x2, ...xn, u)

y = g(x1, x2, ...xn, u)

The last row is a static equation relating the introduced states (x) with

the input u, and the output y .
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State Space Models

Consider a linear differential equation of order n

dny

dtn
+ a1

dn−1y

dtn−1
+ . . . + any = b0

dnu

dtn
+ b1

dn−1u

dtn−1
+ . . . + bnu

An alternative to ONE differential quation of order nth is to write it as a

system of n coupled differential equations, each or order one.

Linear state space representation:

ẋ1 = a11x1 + ... + a1nxn + b1u

ẋ2 = a21x1 + ... + a2nxn + bnu

...

ẋn = an1x1 + ... + annxn + bnu

y = c1x1 + c2x2 + ... + cnx2 + du


ẋ1
ẋ2

ẋn

 =


a11 a12 a1n
a21 a22 a2n

an1 an2 ann



x1
x2

xn

 +


b1
b2

bn

 u

y =
[
c1 c2 ... cn

] 
x1
x2

xn

 + du

NOTE: Only states (x) and inputs (u) are allowed on the right hand side in

Eq.-system above (in f and g) for it to be called a state-space representation!
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State Space Models

Process
u y

Linear dynamics can be described in the following form

ẋ = Ax + Bu

y = Cx (+Du)

Here x ∈ Rn is a vector with states. States can have a physical

”interpretation”, but not necessary.

In this course u ∈ R and y ∈ R will be scalars.

(For MIMO systems, see Multivariable Control (FRTN10))
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Example

Example

The position of a mass m controlled by a force u is described by

mẍ = u

where x is the position of the mass.

m
u

Introduce the states x1 = ẋ and x2 = x and write the system on state

space form. Let the position be the output.
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Dynamical Systems

Continous Time Discrete Time

(sampled)

Linear This course Real-Time Systems / Signal proc.

(FRTN01) .

Nonlinear Nonlinear Control and

Servo Systems (FRTN05)

Next lecture: Nonlinear dynamics can be linearized.
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