
Department of

AUTOMATIC CONTROL

Automatic Control, Basic Course (FRT010)

2105-12-17

Points and grades

All answers must include a clear motivation. The total number of points is 25. The maximum

number of points is specified for each subproblem.

Grade 3: 12 points

4: 17 points

5: 22 points

Accepted aid

Mathematical collections of formulae (e.g. TEFYMA), ‘Collections of formulae in automa-

tic control’, and calculators that are not programmed in advance.

Results

The graded exam will be displayed on December 19, 08-10 am in building 4, room 303.

Thereafter, exams will be archived at the Automatic Control department in Lund.
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Solutions for the exam Automatic Control, Basic Course 2015-12-17

1. A certain system is described by the following differential equation:

ÿ(t)+ 3ẏ(t)+ 12y(t)+ 2ü(t)−5u̇(t) = −2u(t).

a. Write the transfer function from the input u to the output y. (1 p)

b. If u is a unit step, what is the stationary value of y? (1 p)

c. What is the order of the system? (0.5 p)

d. Is the system linear or nonlinear? Motivate your answer. (0.5 p)

Solution

a. Laplace transformation of the differential equation gives:

s2Y (s)+ 3sY (s)+ 12Y (s)+ 2s2U(s)−5sU(s) = −2U(s),

Y (s) =
−2s2 + 5s−2

s2 + 3s+ 12
U(s).

b. The characteristic polynomial is s2 + 3s + 12, and both its poles have real part −1.5.

(For a second order polynomial it is sufficient to check that all coefficients are positive,

to ensure roots with negative real part.) The system is consequently asymptotically

stable, and the final value theorem can be used to compute the stationary value of y.

lim
t→∞

y(t) = lim
s→0

s · −2s2 + 5s−2

s2 + 3s+ 12
· 1

s
= −1

6
.

c. The system has two poles, of which none can be cancelled by the system zeros. It is

therefore of second order.

d. The differential equation is a linear combination of y(t) and u(t) and time derivatives

of these. Hence, the system is linear.

2. Consider the nonlinear system

ẋ1 = −x1 + x2
2,

ẋ2 = x1x2 −u3.

a. Find all stationary points of the system corresponding to u0 = 5. (1 p)

b. Linearize the system around (one of) the stationary points found in the previous step.

If you did not solve the previous problem, use the point (x1
0,x2

0,u0) = (3,9,3).
(2 p)

c. Find the poles of the linearized system and comment upon its stability properties.

(2 p)
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Solution Introduce f1(x,u) and f2(x,u) such that

ẋ1 = −x1 + x2
2 = f1(x,u),

ẋ2 = x1x2 −u3 = f2(x,u).

a. The stationary points can be found by solving

f1(x
0,u0) = 0, f2(x

0,u0) = 0.

Inserting u0 = 5, and starting with the first equation, we get

x0
1 = (x0

2)
2.

Introducing that in the second equation with gives us

(x0
2)

3 = (u0)3.

from which we see that x0
2 = u0 = 5. Evaluation of the first equation with x0

2 = 5 gives

us x0
1 = 25. There is only one stationary point: (x0

1,x
0
2,u

0) = (25,5,5).

b. The system should be linearized around (x0
1,x

0
2,u

0) = (25,5,5). The partial derivatives

needed are
∂ f1

∂x1

= −1,
∂ f1

∂x2

= 2x2,

∂ f2

∂x1

= x2,
∂ f2

∂x2

= x1,

and
∂ f1

∂u
= 0,

∂ f2

∂u
= −3u2.

Introduce the new variables

∆x = x− x0,

∆u = u−u0.

Evaluation of the partial derivatives at the stationary point gives the following state

space representation of the linearized system:

∆ẋ = A∆x+ B∆u,

where

A =

[−1 10

5 25

]

, B =

[

0

−75

]

.

Along the same lines, the matrices corresponding to the stationary point (x0
1,x

0
2,u

0) =
(3,9,3) are

A =

[−1 −18

9 3

]

, B =

[

0

−27

]

.
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c. The poles are given by the eigenvalues of the A-matrix.

det (sI −A) =

∣

∣

∣

∣

s+ 1 −10

−5 s−25

∣

∣

∣

∣

= (s+ 1)(s−25)−50 = s2 −24s−75 = 0.

By solving this equation we obtain the poles:

s = 12±
√

219 = 12±14.80.

One of the poles has positive real part (26.80), so the system is unstable.

3. You are given a physical process with transfer function

Gp(s) =
2

s+ 3
.

Design a PI-controller so that all poles of the closed-loop system are -3. (2 p)

Solution

The open-loop transfer function is

Go = P(s)C(s) =
2K(Tis+ 1)

Tis(s+ 3)
.

Denoting the numerator and denominator of Go by V and W , respectively, the closed-

loop transfer function can be written

Gc =
Go

1+ Go

=
V/W

1+V/W
=

V

V +W
=

2K(Tis+ 1)

2K(Tis+ 1)+ Tis(s+ 3)
.

The characteristic polynomical (normalized with respect to the coefficient of s2) is

s2 +(2K + 3)s+ 2K/Ti. Matching this with the specification (s + 3)2 = s2 + 6s + 9

yields






2K + 3 = 6,

2K

Ti

= 9,

with solution K = 3/2, and Ti = 1/3.

(One can note that the true order of the closed-loop system is one, due to a pole-zero

cancellation.)

4. You are given a system











ẋ =

[

2 1

0 −4

]

x+

[

0

1

]

u,

y = [1 1 ]x.

a. Is the system controllable? (1 p)

b. Design a state feedback controller

u = −Lx+ lrr,

such that the resulting closed-loop system has its poles in s = −4 and s = −5. Deter-

mine lr so that y = r in stationarity. (2 p)
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c. Is the system observable? (1 p)

d. Suppose that measures of the states are not available. Design a Kalman filter to esti-

mate the value of the states. Place the poles of the Kalman filter in −10. (2 p)

Solution

a. The controllability matrix is given by

Wc = [B AB ] =

[

0 1

1 −4,

]

and its determinant is −1 6= 0. This means that Wc is full rank, which is equivalent to

the system being controllable.

b. The characteristic polynomial of the closed-loop system is the determinant of sI −
(A−BL). Therefore we have to find the determinant of

[

s 0

0 s

]

−
([

2 1

0 −4

]

−
[

0 0

l1 l2

])

=

[

s−2 −1

l1 s+ 4+ l2

]

.

The determinant of the above matrix is s2 +(l2 + 2)s+(l1 −2l2 −8). Matching coef-

ficients of s with the desired characteristic polynomial (s + 4)(s + 5) = s2 + 9s + 20

yields
{

l2 + 2 = 9,

l1 −2l2 −8 = 20,

with solution L = [ l1 l2 ] = [42 7 ].

The transfer function of the closed-loop system is G(s) = C(sI − (A − BL))−1Blr.

Since the system is asymptotically stable by design, we can use the final value theorem

to compute the static gain

G(0) = C(BL−A)−1Blr = [1 1 ]

([

0

1

]

[42 7 ]−
[

2 1

0 −4

])−1 [

0

1

]

lr.

Performing the numeric computations, we obtain G(0) = −lr/20. That is, lr = −20

gives the static gain G(0) = 1.

c. Since

WO =

[

C

CA

]

=

[

1 1

2 −3

]

,

and its determinant is equal to −5 6= 0, the system is observable.

d. The characteristic equation for the Kalman filter is given by det(sI −A + KC), where

K = [k1 k2 ]T is our design variable. Computing the determinant gives (cf. previous

problem for choosing state feedback vector L):
∣

∣

∣

∣

s+ k1 −2 k1 −1

k2 s+ k2 + 4

∣

∣

∣

∣

= s2 +(k1 + k2 + 2)s+(4k1 − k2 −8).

Equating coefficient of s with those of the desired dynamics (s+10)2 = s2 +20s+100

yields
{

k1 + k2 + 2 = 20,

4k1 − k2 −8 = 100.

The system has solution K = [k1 k2 ]T = 1
5
[126 −36 ]T = [25.2 −7.2 ]T .
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5. Pair the following transfer functions and step responses. Do not forget to motivate

your answers. (2 p)

P1(s) =
1

s+ 1
, P2(s) =

1

s+ 1
e−s, P3(s) =

1

(s+ 1)2
, P4(s) =

1

s2 + s+ 1
.

A B

C D

Solution

• 2–D. P2 is the only transfer function with a pure time delay, as seen in step

response D.

• 1–C. Both P3 and P4 are asymptotically stable second order systems. The initial

value theorem applied to the derivative of their step response results in 0. Since

the initial derivative of C is non-zero, it must consequently correspond to P1.

• 3–A. P3 has real poles, resulting in a critically damped step response.

• 4–B. The characteristic polynomial of P4 corresponds to angular speed ω = 1

and relative damping ζ = 1/2. It therefore results in the only oscillatory step

response, B.

6. Are there situations where feed forward is preferential to feedback control? If so, give

an example. (1 p)

Solution

Feed forward is efficient in eliminating known or directly measurable disturbances,

before they appear in the process output (which is a necessity for feedback to attenuate

them).

6



Automatic Control, Basic Course 2105-12-17

One example is having access to outdoor temperature measurement when controlling

indoor temperature, and establish a feed forward link, which for instances increases

radiator output at night, before a dip in indoor temperature arises.

7. You are faced with designing a P controller C(s) = K for a process with dynamics

P(s) =
2

s(s+ 1)
.

You would like to maximize K, in order to minimize the stationary error due to load

disturbances. However, due to model uncertainty, you need to maintain a 30◦ phase

margin. What value of K do these design criteria result in? (3 p)

Solution

The P controller leaves the open-loop phase unaffected, while changing its gain by a

factor K. We therefore need to compute the process gain at the phase shift correspon-

ding to the desired phase margin, in order to determine K.

The phase of the process is given by

arg (P(iω)) = arg

(

2

iω(iω + 1)

)

= arg(2)−arg(iω +1)−arg(iω)=−arctan(ω)−90◦.

Equating this with the desired phase shift

−180◦ + ϕm = −180◦ + 30◦ = −150◦,

gives the corresponding angular frequency

−150◦ = −arctan(ω)−90◦ ⇒ ω = tan(60◦) =
√

3.

The gain of the process at this frequency is

|P(iω)| = 2

|ω |
√

ω2 + 1
=

2√
3
√

3+ 1
=

1√
3
,

and the maximal admissible controller gain is

K = |P(iω)|−1 =
√

3 ≈ 1.73.

8. You are introduced to a control system with open-loop transfer function

Go(s) =
10

s(s+ 1)
.

Performance is satisfactory in terms of robustness. However, your employer would

like to make the control loop faster. Propose a solution that doubles the cross-over

frequency, while maintaining the current phase margin. (3 p)
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Solution

There are several ways to solve this problem. Here we will use the lead compensation

link

GK(s) = KkN
s+ b

s+ bN
,

introduced in the course. First we compute the current cross-over frequency ω0
c , by

solving

|P(iω0
c )| = 10

ω0
c

√

(ω0
c )2 + 1

= 1.

The above corresponds to a quadratic equation with positive solution

ω0
c =

√√
401−1

2
≈ 3.08.

The sepcification is to double the cross-over frequency, ωc = 2ω0
c ≈ 6.17.

The phase shift at the current cross-over frequency is

arg
(

Go(iω
0
c )

)

= arg(10)− arg(iω0
c + 1)− arg(iω0

c ) = −arctan(ω0
c )−90◦.

In order to maintain the current phase margin, we need a phase advance

∆ϕm =
(

180◦ + arg
(

Go(iω
0
c )

))

−
(

180◦ + arg
(

Go(2iω0
c )

))

= arctan(2ω0
c )− arctan(ω0

c ) ≈ 8.76◦.

From the graph in the collection of formulae, we see that this rougly corresponds to

N = 1.4. We choose b to solve

ωc = b
√

N ⇒ b =
ωc√

N
≈ 5.2,

in order to achieve maxium phase advance at ωc. Finally, we ensure that ωc becomes

the cross-over frequency, by solving

|GK(iωc)||Go(iωC)| = 1.

Here we use that |GK(iωc)| = KK

√
N:

KK =
1√

N|Go(iωc)|
=

ωc

√

ω2
c + 1

10
√

N
≈ 3.3.

(With numerical values given above, the new phase margin is 18.7◦, compared with

the original one of 18.0◦. The difference is a result of numerical rounding combined

with a slightly inaccurate reading of the collection of formulae graph when obtaining

N.)
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