AUTOMATIC CONTROL Collection of Formulae

Department of Automatic Control Lund University June 2013

Matrix theory

Notations

Matrix of order $m \times n$

$$A = \left(egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & & & & \ lpha_{m1} & a_{m2} & \cdots & a_{mn} \end{array}
ight)$$

Vector of dimension n

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Transpose

$$B = A^{T}$$

$$b_{ij} = a_{ji}$$

$$(AB)^{T} = B^{T}A^{T}$$

The matrix is symmetric if $a_{ij} = a_{ji}$.

Determinant

$$\det A = |A| = egin{array}{cccccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & & & & \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}$$

If A is of order 2x2, then

$$\det A = a_{11}a_{22} - a_{12}a_{21}$$

In general

$$\det A = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det M_{ij}$$

$$= \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det M_{ij}$$

where M_{ij} is the matrix one obtains if row i and column j are removed from the matrix A.

Inverse

$$A^{-1}A = AA^{-1} = I \qquad (\det A \neq 0)$$

If A is of order 2x2, then

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

In general,

$$A^{-1} = \frac{1}{\det A} C^T$$

where the elements in C are given by

$$c_{ij} = (-1)^{i+j} \det M_{ij}$$

Eigenvalues and eigenvectors

The eigenvalues $(\lambda_i, i=1,2,...,n)$ and the eigenvectors $(x_i, i=1,2,...,n)$ are given as the solutions to the equation system

$$Ax = \lambda x$$

which has a solution if

$$\det(\lambda I - A) = \lambda^n + \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n = 0$$

 $\lambda^n + \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \cdots + \alpha_n$ is called the characteristic polynomial. $\det(\lambda I - A) = 0$ is called the characteristic equation.

Dynamical systems

State-space equations

$$\frac{dx}{dt} = Ax + Bu$$

$$y = Cx + Du$$

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

Weighting function

$$y(t) = \int_0^t h(t - \tau)u(\tau)d\tau$$

 $h(t) = Ce^{At}B + D\delta(t)$

Transfer function

$$Y(s) = G(s)U(s)$$

 $G(s) = C(sI - A)^{-1}B + D = \mathcal{L}\{h(t)\}$

The denominator of G is the characteristic polynomial to the matrix A.

Frequency response

$$u(t) = \sin \omega t$$

$$y(t) = a \sin(\omega t + \varphi)$$

$$a = |G(i\omega)|$$

$$\varphi = \arg G(i\omega)$$

Linearization

If the nonlinear system

$$\frac{dx}{dt} = f(x, u)$$
$$y = g(x, u)$$

is linearized around a stationary point (x_0, u_0) , a change of variables

$$\Delta x = x - x_0$$

$$\Delta u = u - u_0$$

$$\Delta y = y - y_0$$

then gives the linear system

$$\frac{d\Delta x}{dt} = \frac{\partial f}{\partial x}(x_0, u_0)\Delta x + \frac{\partial f}{\partial u}(x_0, u_0)\Delta u$$
$$\Delta y = \frac{\partial g}{\partial x}(x_0, u_0)\Delta x + \frac{\partial g}{\partial u}(x_0, u_0)\Delta u$$

State-space representations

1. Diagonal form

$$\frac{dz}{dt} = \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} z + \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} u$$

$$y = \begin{pmatrix} \gamma_1 & \gamma_2 & \dots & \gamma_n \\ \end{pmatrix} z + Du$$

2. Observable canonical form

$$\frac{dz}{dt} = \begin{pmatrix} -a_1 & 1 & 0 & \dots & 0 \\ -a_2 & 0 & 1 & & 0 \\ \vdots & & & & \\ -a_{n-1} & 0 & 0 & & 1 \\ -a_n & 0 & 0 & & 0 \end{pmatrix} z + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \end{pmatrix} z + Du$$

3. Controllable canonical form

$$\frac{dz}{dt} = \begin{pmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ 1 & 0 & & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & & 1 & 0 \end{pmatrix} z + \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} u$$

$$y = \begin{pmatrix} b_1 & b_2 & \dots & b_n \end{pmatrix} z + Du$$

The transfer function of the system is

$$G(s) = D + \frac{b_1 s^{n-1} + b_2 s^{n-2} + \dots + b_n}{s^n + a_1 s^{n-1} + \dots + a_n}$$
$$= D + \frac{\beta_1 \gamma_1}{s - \lambda_1} + \frac{\beta_2 \gamma_2}{s - \lambda_2} + \dots + \frac{\beta_n \gamma_n}{s - \lambda_n}$$

The Laplace transform

Operator lexicon

	Laplace transform $F(s)$	Time function $f(t)$		
1	$\alpha F_1(s) + \beta F_2(s)$	$\alpha f_1(t) + \beta f_2(t)$	Linearity	
2	F(s+a)	$e^{-at}f(t)$	Damping	
3	$e^{-as}F(s)$	$\begin{cases} f(t-a) & t-a > 0 \\ 0 & t-a < 0 \end{cases}$	Time delay	
4	$\frac{1}{a}F\left(\frac{s}{a}\right) (a>0)$	f(at)	Scaling in t-domain	
5	F(as) (a>0)	$\frac{1}{a}f\left(\frac{t}{a}\right)$	Scaling in s-domain	
6	$F_1(s)F_2(s)$	$\int_0^t f_1(t-\tau) f_2(\tau) d\tau$	Convolution in <i>t</i> -domain	
7	$rac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}F_1(\sigma)F_2(s-\sigma)d\sigma$	$f_1(t)f_2(t)$	Convolution in s-domain	
8	sF(s)-f(0)	$\int f'(t)$	Differentiation in <i>t</i> -domain	
9	$s^2F(s) - sf(0) - f'(0)$	f''(t)		
10	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$	$\int f^{(n)}(t)$		
11	$rac{d^n F(s)}{ds^n}$	$(-t)^n f(t)$	Differentiation in s-domain	
12	$\frac{1}{s} F(s)$	$\int_0^t f(\tau)d\tau$	Integration in <i>t</i> -domain	
13	$\int_s^\infty F(\sigma)d\sigma$	$\frac{f(t)}{t}$	Integration in s-domain	
14	$\lim_{s o 0} sF(s)$	$\lim_{t o\infty}f(t)$	Final value theorem	
15	$\lim_{s o\infty}sF(s)$	$\lim_{t\to 0} f(t)$	Initial value theorem	

Transform lexicon

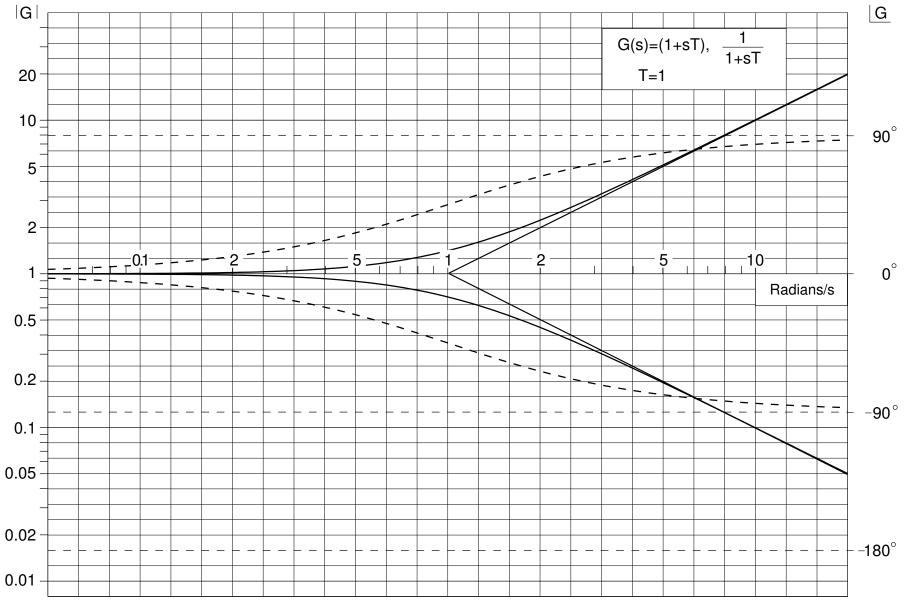
	Laplace transform $F(s)$	Time function $f(t)$	
1	1	$\delta(t)$	Dirac function
2	$\frac{1}{s}$	1	Step function
3	$\frac{1}{s^2}$ $\frac{1}{s^3}$	t	Ramp function
4	$\frac{1}{s^3}$	$rac{1}{2}t^2$	Acceleration
5	$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	
6	$\frac{1}{s+a}$	e^{-at}	
7	$\frac{1}{(s+a)^2}$	$t \cdot e^{-at}$ $(1-at)e^{-at}$ $rac{1}{T}e^{-t/T}$	
8	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	
9	$\frac{1}{1+sT}$	$\left[rac{1}{T}e^{-t/T} ight]$	
10	$\frac{a}{s^2 + a^2}$	$\sin at$	
11	$\frac{a}{s^2 - a^2}$	$\sinh at$	
12	$\frac{s}{s^2 + a^2}$	$\cos at$	
13	$\frac{s}{s^2 - a^2}$	$\cosh at$	
14	$\frac{1}{s(s+a)}$	$\left rac{1}{a} \left(1 - e^{-at} ight) ight $	
15	$\frac{1}{s(1+sT)}$	$\frac{1}{a} \left(1 - e^{-at} \right)$ $1 - e^{-t/T}$	
16	$\frac{1}{(s+a)(s+b)}$	$\frac{e^{-bt} - e^{-at}}{a - b}$	

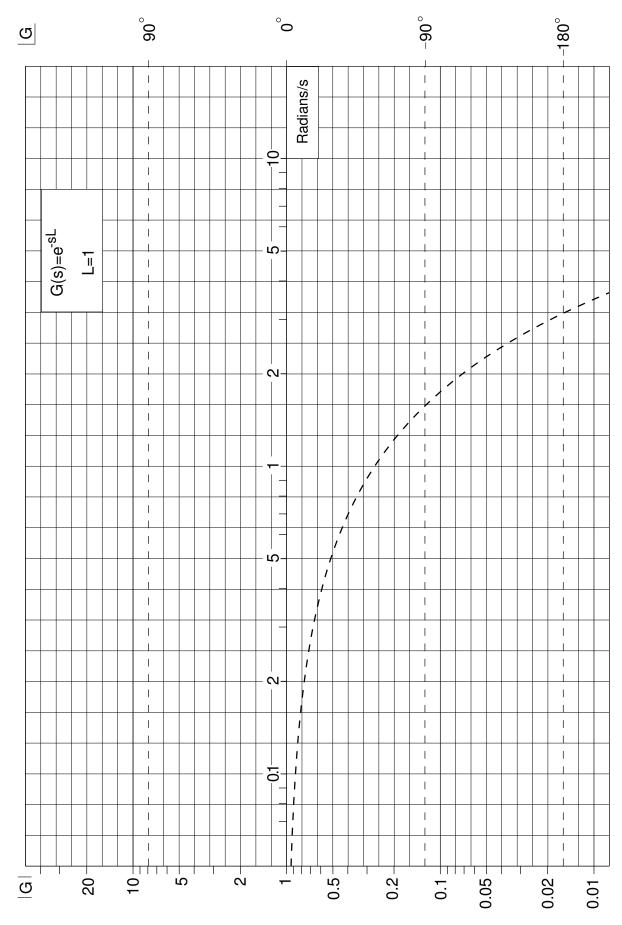
Transform lexicon, continued

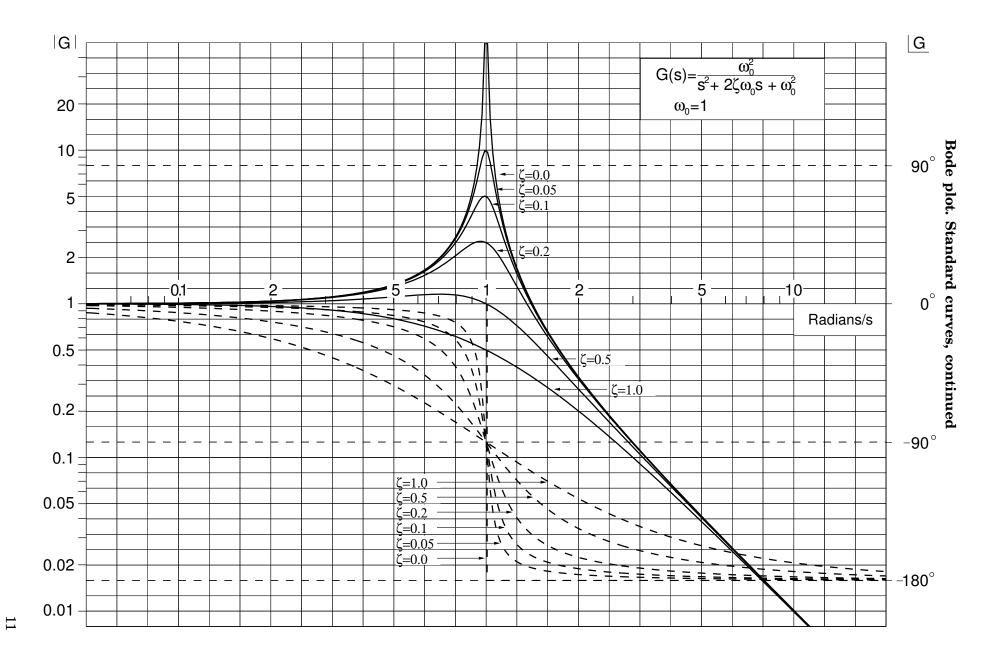
	Transform fexicon, continueu				
	Laplace transform $F(s)$		Time function $f(t)$		
17	$\frac{s}{(s+a)(s+b)}$		$\frac{ae^{-at} - be^{-bt}}{a - b}$		
18	$\frac{a}{(s+b)^2 + a^2}$		$\frac{ae^{-at} - be^{-bt}}{a - b}$ $e^{-bt} \sin at$ $e^{-bt} \cos at$		
19	$\frac{s+b}{(s+b)^2+a^2}$		$e^{-bt}\cos at$		
20	$\frac{1}{s^2 + 2\zeta \omega_0 s + \omega_0^2}$				
		$\zeta = 0$	$\frac{1}{\omega_0}\sin\omega_0 t$		
		$\zeta < 1$	$\frac{1}{\omega_0\sqrt{1-\zeta^2}}e^{-\zeta\omega_0t}\sin\left(\omega_0\sqrt{1-\zeta^2}t\right)$		
		$\zeta = 1$	$te^{-\omega_0 t}$		
		$\zeta > 1$	$egin{aligned} rac{1}{\omega_0} \sin \omega_0 t \ & rac{1}{\omega_0 \sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin \left(\omega_0 \sqrt{1-\zeta^2} t ight) \ & t e^{-\omega_0 t} \ & rac{1}{\omega_0 \sqrt{\zeta^2-1}} e^{-\zeta \omega_0 t} \sinh \left(\omega_0 \sqrt{\zeta^2-1} t ight) \end{aligned}$		
21	$\frac{s}{s^2 + 2\zeta \omega_0 s + \omega_0^2}$ $0 \le \tau \le \pi :$				
	$0 \le \tau \le \pi$:	$\zeta < 1$	$\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin \left(\omega_0 \sqrt{1-\zeta^2} t + \tau \right)$		
			$\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin\left(\omega_0 \sqrt{1-\zeta^2} t + \tau\right)$ $\tau = \arctan\frac{\omega_0 \sqrt{1-\zeta^2}}{-\zeta \omega_0}$		
		$\zeta = 0$	$\cos \omega_0 t$		
22	$\frac{a}{\left(s^2+a^2\right)(s+b)}$	$\zeta = 1$	$\cos \omega_0 t$ $(1 - \omega_0 t)e^{-\omega_0 t}$ $\frac{1}{\sqrt{a^2 + b^2}} \left(\sin(at - \phi) + e^{-bt}\sin\phi\right)$ $\phi = \arctan\frac{a}{b}$		
			$\phi = \arctan \frac{a}{b}$		

Laplace transform table, continued

	Laplace transform $F(s)$		Time function $f(t)$
23	$\frac{s}{\left(s^2+a^2\right)(s+b)}$		$\frac{1}{\sqrt{a^2 + b^2}} \left(\cos(at - \phi) - e^{-bt} \cos \phi \right)$ $\phi = \arctan \frac{a}{b}$
24	$\frac{ab}{s(s+a)(s+b)}$		$1 + \frac{ae^{-bt} - be^{-at}}{b - a}$
25	$\frac{a^2}{s(s+a)^2}$		$ \begin{vmatrix} 1 - (1+at)e^{-at} \\ t - \frac{1}{a}(1-e^{-at}) \end{vmatrix} $
26	$\frac{a}{s^2(s+a)}$		$\left \ t - \frac{1}{a}(1-e^{-at}) \right $
	$\frac{1}{(s+a)(s+b)(s+c)}$		$\frac{(b-c)e^{-at} + (c-a)e^{-bt} + (a-b)e^{-ct}}{(b-a)(c-a)(b-c)}$
28	$\frac{\omega_0^2}{s(s^2 + 2\zeta\omega_0 s + \omega_0^2)}$		
		$0 < \zeta < 1$	$1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin\left(\omega_0 \sqrt{1-\zeta^2} t + \phi\right)$
			$\phi = rccos \zeta$
		$\zeta = 0$	$1-\cos\omega_0 t$
29	$\frac{1}{(s+a)^{n+1}}$		$1-\cos\omega_0 t$ $\dfrac{1}{n!}t^n e^{-at}$
30	$\frac{s}{(s+a)(s+b)(s+c)}$		$\frac{a(b-c)e^{-at} + b(c-a)e^{-bt} + c(a-b)e^{-ct}}{(b-a)(b-c)(a-c)}$
31	$\frac{as}{\left(s^2+a^2\right)^2}$		$\frac{t}{2}\sin at$
32	$rac{1}{\sqrt{s}}$ $rac{1}{\sqrt{s}}F(\sqrt{s})$		$\frac{1}{\sqrt{\pi t}}$
33	$rac{1}{\sqrt{s}}F(\sqrt{s})$		$egin{aligned} \sqrt{\pi t} \ rac{1}{\sqrt{\pi t}} \int_0^\infty e^{-\sigma^2/4t} f(\sigma) d\sigma \end{aligned}$







Stability

Stability conditions for low-order polynomials

Routh's algorithm

Consider the polynomial

$$F(s) = a_0 s^n + b_0 s^{n-1} + a_1 s^{n-2} + b_1 s^{n-3} + \cdots$$

Assume that the coefficients a_i, b_i are real and that a_0 is positive. Form the table

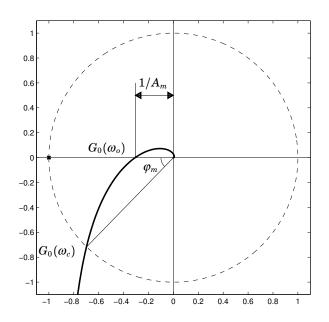
where

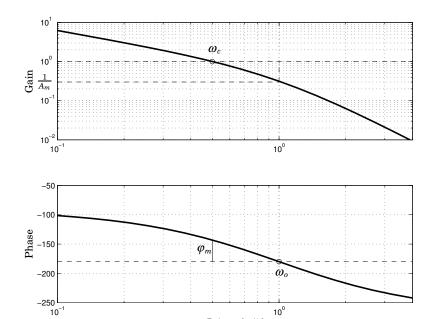
$$c_0 = a_1 - a_0b_1/b_0$$

 $c_1 = a_2 - a_0b_2/b_0$
:
 $d_0 = b_1 - b_0c_1/c_0$
 $d_1 = b_2 - b_0c_2/c_0$
:

The number of sign changes in the sequence $a_0, b_0, c_0, d_0 \cdots$ equal the number of roots for the polynomial F(s) in the right half plane Re s > 0. All the roots of the polynomial F(s) lie in the left half plane if all numbers $a_0, b_0, c_0, d_0, \ldots$ are positive.

Stability margins





Gain margin:

$$A_m = 1/\left|G_0(i\omega_0)\right|$$

Frekvens [rad/s]

Phase margin:

$$\varphi_m = \pi + \arg G_0(i\omega_c)$$

Delay margin:

$$L_m = \varphi_m/\omega_c$$

State feedback and Kalman filtering

State feedback

If the system

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx$$

has the control law

$$u = -Lx + \ell_r r$$

then the closed-loop system is given by

$$\frac{dx}{dt} = (A - BL)x + B\ell_r r$$
$$y = Cx$$

Criterion for controllability. The controllable states belong to the linear subspace which is spanned by the columns of the matrix

$$W_s = \left(\begin{array}{cccc} B & AB & \cdots & A^{n-1}B \end{array} \right)$$

A system is controllable if and only if the matrix W_s has rank n.

Kalman filtering

Assume that only the output signal y can be directly measured. Introduce the model

$$\frac{d\hat{x}}{dt} = A\hat{x} + Bu + K(y - C\hat{x})$$

The reconstruction error $\tilde{x} = x - \hat{x}$ satisfies

$$\frac{d\tilde{x}}{dt} = (A - KC)\tilde{x}$$

Criterion for observability. The subspace of unobservable states is the null space of the matrix

$$W_o = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

A system is observable if and only if the matrix W_0 has rank n.

Lead-lag compensation

Lag compensator

$$G_K(s) = \frac{s+a}{s+a/M} = M \frac{1+s/a}{1+sM/a}$$
 $M > 1$

The rule of thumb

$$a = 0.1\omega_c$$

guarantees that the phase margin is reduced by less than 6°.

Lead compensator

$$G_K(s) = K_K N \frac{s+b}{s+bN} = K_K \frac{1+s/b}{1+s/(bN)}$$
 $N > 1$

The maximum phase advance is given by the figure below:



The peak of the phase curve is located at the frequency

$$\omega = b\sqrt{N}$$

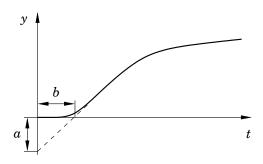
The gain of the compensator at this frequency is

$$K_K \sqrt{N}$$

Simple PID tuning rules

The Ziegler-Nichols step response method

Consider the step response for the *open-loop* system. The tangent is drawn from the point on the step response with the maximal slope. From the intersection of the tangent and the coordinate axes the gain a and time b are found. The PID-parameters are calculated from the table below.



Controller	K	T_i	T_d
P	1/a		
PI	0.9/a	3b	
PID	1.2/a	2b	0.5b

The Ziegler-Nichols frequency method

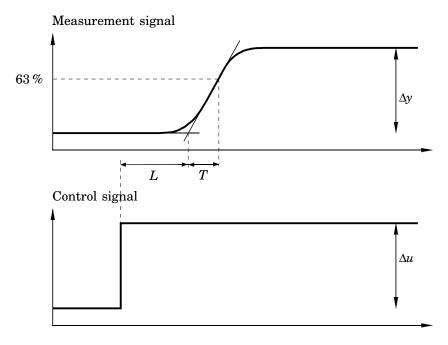
This method is based on observations of the *closed-loop* system. Outline of the procedure:

- 1. Disconnect the integral and the derivative part of the PID-controller.
- 2. Adjust K until the system oscillates with constant amplitude. Denote this value of K as K_0 .
- 3. Measure the period T_0 for the oscillation. The different settings for the controller parameters are given in the table below.

Controller	K	T_i	T_d
P	$0.5K_0$		
PI	$0.45K_0$	$T_0/1.2$	
PID	$0.6K_{0}$	$T_0/2$	$T_0/8$

The Lambda method

The Lambda method is based on a step response experiment where the static gain K_p , a deadtime L, and a time constant T are determined according to the following figure



where

$$K_p = \frac{\Delta y}{\Delta u}$$

The controller parameters for a PI controller are:

$$K = \frac{1}{K_p} \frac{T}{L + \lambda}$$
$$T_i = T$$

The controller parameters for a PID controller on series and parallel form, respectively, are:

$$K' = rac{1}{K_p} rac{T}{L/2 + \lambda}$$
 $K = rac{1}{K_p} rac{L/2 + T}{L/2 + \lambda}$ $T_i' = T$ $T_i = T + L/2$ $T_d' = rac{L}{L}$ $T_d = rac{TL}{L + 2T}$