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1. Model Building and Linearization

1.1

m

k

c

y(t)

f (t)

In the right figure, a mass m is attached
to a wall with a spring and a damper.
The spring has a spring constant k and
the damper has a damping constant c. It
is assumed that k > c2/4m. An external
force f is acting on the mass. We denote
the translation of the mass from its equilibrium position by y. Fur-
ther, we let f (t) be the input signal and y(t) be the output signal.
The force equation gives

mÿ = −ky− cẏ+ f

a. Introduce the states x1 = y and x2 = ẏ and write down the state
space representation of the system.

b. Assume that the system is at rest at t = 0 and that f (t) changes
from 0 to 1 as a step at t = 0. What is the resulting y(t)? Sketch the
solution.

1.2 R

L

Cvin

+

−

vout

+

−

iIn the RLC circuit to the right,
the input and output voltages are
given by vin(t) and vout(t), respec-
tively. By means of Kirchhoff’s
voltage law we see that

vin − Ri− vout − L
di

dt
= 0

For the capacitor, we additionally have

Cv̇out = i

Introduce the states x1 = vout and x2 = v̇out and give the state space
representation of the system.

1.3 qin

qout

h

A cylindrical water tank with cross section
A has an inflow qin and an outflow qout.
The outlet area is a. Under the assump-
tion that the outlet area is small in com-
parison to the cross section of the tank,
Torricelli’s law vout =

√
2#h is valid and

gives the outflow rate.

a. What would be a suitable state variable
for this system? Determine a differential
equation, which tells how the state variable depends on the inflow
qin.

b. Give the state space representation of the dependence of the inflow
qin on the outflow qout.
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c. Let the inflow be constant, qin = q0in. Determine the corresponding
constant tank level h0 and outflow q0out. Linearize the system around
this stationary point.

d. Assume that the system is at equilibrium with inflow qin = q0in. If the
inflow is suddenly turned off, what will the outflow qout(t) become
according to the nonlinear and linear equations, respectively?

1.4 Give the state space representation of the system

...
y + 3ÿ+ 2ẏ+ y = u

where u(t) and y(t) are the input and output, respectively. Choose
states x1 = y, x2 = ẏ and x3 = ÿ.

1.5 A process with output y(t) and input u(t) is described by the differ-
ential equation

ÿ+
√
y+ yẏ= u2

a. Introduce states x1 = y, x2 = ẏ and give the state space representa-
tion of the system.

b. Find all stationary points (x01, x
0
2,u

0) of the system.

c. Linearize the system around the stationary point corresponding to
u0 = 1.

1.6 Linearize the system

ẋ1 = x21x2 +
√
2 sinu ( = f1(x1, x2,u))

ẋ2 = x1x22 +
√
2 cosu ( = f2(x1, x2,u))

y = arctan
x2
x1
+ 2u2 ( = #(x1, x2,u))

around the stationary point u0 = π /4.

1.7 For a process with input u(t) and output y(t) it holds that

ÿ+ (1+ y4)ẏ =
√
u+ 1− 2

a. Write the differential equation in state space form.

b. Linearize the state space equations around the point u0 = 3, y0 = 1,
ẏ0 = 0.

1.8 A simple model of a satellite, orbiting the earth, is given by the
differential equation

r̈(t) = r(t)ω 2 −
β

r2(t)
+ u(t)

where r is the satellite’s distance to the earth and ω is its angular
acceleration, see figure 1.1. The satellite has an engine, which can
exert a radial force u.
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r(t)

u(t)

Figure 1.1 Satellite orbiting the earth.

a. Introduce the state vector

x(t) =






r(t)
ṙ(t)







and write down the nonlinear state space equations for the system.

b. Linearize the state space equations around the stationary point

(

r, ṙ,u
)

=
(

r0, 0, 0
)

Consider r as the output and give the state space representation of
the linear system. Express r0 in β and ω .
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2. Dynamical Systems

2.1 Determine the transfer functions and give differential equations,
describing the relation between input and output for the following
systems, respectively.

a.

ẋ =






−2 0

0 −3





 x +







5

2





u

y =


−1 1


 x + 2u

b.

ẋ =






−7 2

−15 4





 x +







3

8





u

y=


−2 1


 x

c.

ẋ =






−1 0

0 −4





 x +







3

2





u

y =


 1 0


 x + 5u

d.

ẋ =






1 4

−2 −3





 x +







−1
1





u

y =


 1 2


 x + 3u

2.2 Determine the impulse and step responses of the systems in assign-
ment 2.1.

2.3 Derive the formula G(s) = C(sI − A)−1B + D for a general system

ẋ = Ax + Bu
y = Cx + Du

2.4 Consider the system

G(s) =
1

s2 + 4s+ 3

a. Calculate the poles and zeros of the system.

b. What is the static gain of the system?

c. Calculate and sketch the step response of the system.

2.5 Consider the system

G(s) =
0.25

s2 + 0.6s+ 0.25
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a. Calculate the poles and zeros of the system.

b. What is the static gain of the system?

c. Calculate and sketch the step response of the system.

2.6 Determine the transfer function and poles of the oscillating mass in
assignment 1.1. Explain how the poles move if one changes k and c,
respectively. Can the poles end up in the right half plane?

2.7 Determine the transfer function of

a. the RLC circuit in assignment 1.2,

b. the linearized tank in assignment 1.3.

2.8 Sketch the step response of the processes with the following transfer
functions

a. G(s) =
2

s+ 2/3

b. G(s) =
8

s2 + s+ 4

c. G(s) =
s2 + 6s+ 8
s2 + 4s+ 3

2.9 Determine which five of the following transfer functions correspond
to the step responses A–E below.

G1(s) =
0.1

s+ 0.1
G2(s) =

4

s2 + 2s+ 4

G3(s) =
0.5

s2 − 0.1s+ 2
G4(s) =

−0.5
s2 + 0.1s+ 2

G5(s) =
1

s+ 1
G6(s) =

4

s2 + 0.8s+ 4

G7(s) =
2

s2 + s+ 3
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t

y

1

1

A

t

y

1

1

B

t

y

1

1

C

t

y

1

1

D

t

y

1

1

E

2.10 Pair each of the four pole-zero plots with the corresponding step
responses A–G.

1−1−2−3

1

−1

1

×

×
1−1−2−3

1

−1

2

× ×

1−1−2−3

1

−1

3

×

×
1−1−2−3

1

−1

4

× ×
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t

y

1

1

A

t

y

1

1

B

t

y

1

1

C

t

y

1

1

D

t

y

1

1

E

t

y

1

1

F

t

y

1

1

G

2.11 Determine the transfer function from U to Y for the systems below.

a.

U + G1 Y

G2

b.

H1

U G1 + G2 Y

H2
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c.

G3 +

U + G1 G2 Y

d.

U + G1 + G2 Y

−H2

−H1

2.12 Consider the transfer function

G(s) =
s2 + 6s+ 7
s2 + 5s+ 6

Write the system in

a. diagonal form,

b. controllable canonical form,

c. and observable canonical form.
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3. Frequency Analysis

3.1 Assume that the system

G(s) =
0.01(1+ 10s)
(1+ s)(1+ 0.1s)

is subject to the input u(t) = sin 3t, −∞ < t < ∞

a. Determine the output y(t).

b. The Bode plot of the system is shown in figure 3.1. Determine the
output y(t) by using the Bode plot instead.

10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

10−3 10−2 10−1 100 101 102 103
−90

−45

0

45

90

M
a
g
n
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u
d
e

P
h
a
se

Frequency [rad/s]

Figure 3.1 The Bode plot in assignment 3.1.

3.2 Assume that the oscillating mass in assignment 1.1 has m = 0.1 kg,
c = 0.05 Ns/cm and k = 0.1 N/cm. The transfer function is then
given by

G(s) =
10

s2 + 0.5s+ 1

a. Let the mass be subject to the force f = sinω t, −∞ < t < ∞.
Calculate the output for ω = 0.2, 1 and 30 rad/s.

b. Instead, use the Bode plot of the system in figure 3.2 to determine
the output for ω = 0.2, 1 and 30 rad/s.
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Figure 3.2 The Bode plot of the oscillating mass in assignment 3.2.

3.3 Draw the Bode plots corresponding to the following transfer func-
tions

a.
G(s) =

3

1+ s/10

b.
G(s) =

10

(1+ 10s)(1 + s)

c.
G(s) =

e−s

1+ s

d.
G(s) =

1+ s
s(1+ s/10)

e.
G(s) =

2(1+ 5s)
s(1+ 0.2s+ 0.25s2)

3.4 Exploit the results from the previous assignment in order to draw
the Nyquist curves of

a.
G(s) =

3

1+ s/10

b.
G(s) =

10

(1+ 10s)(1 + s)
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c. G(s) =
e−s

1+ s

3.5 The Bode plot below was obtained by means of frequency response
experiments, in order to analyze the dynamics of a stable system.
What is the transfer function of the system?
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10−4
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3.6 Measurements resulting in the Bode plot below have been conducted
in order to analyze the dynamics of an unknown system. Use the
Bode plot to determine the transfer function of the system. Assume
that the system is stable and lacks complex poles and zeros.
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4. Feedback Systems

4.1 Assume that the air temperature y inside an oven is described by
the differential equation

ẏ(t) + 0.01y(t) = 0.01u(t)

where u is the temperature of the heating element.

a. Let u be the input and y the output and determine the transfer
function GP(s) of the oven.

b. The oven is to be controlled by a P controller, GR(s) = K , according
to the block diagram below. Write down the transfer function of the
closed loop system.

Σ
r e u y

GR GP

−1

c. Choose K such that the closed loop system obtains the characteristic
polynomial

s+ 0.1

4.2 The below figure shows a block diagram of a hydraulic servo system
in an automated lathe.

ΣΣ
r e

f

u y
GR GP

−1

The measurement signal y(t) represents the position of the tool
head. The reference tool position is r(t), and the shear force is de-
noted f (t). GR is the transfer function of the position sensor and sig-
nal amplifier, while GP represents the dynamics of the tool mount
and hydraulic piston

GP(s) =
1

ms2 + ds

Here m is the mass of the piston and tool mount, whereas d is the
viscous damping of the tool mount. In the assignment it is assumed
that r(t) = 0.

a. How large does the deviation e(t) = r(t)−y(t) between the reference-
and measured tool head position become in stationarity if the shear
force f (t) is a unit step? The controller is assumed to have a constant
gain GR(s) = K .
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b. How is this error changed if the amplifier is replaced by a PI con-
troller with transfer function GR(s) = K1 + K2/s?

4.3 A process is controlled by a P controller according to the figure below.

ΣΣ
r

n

u y
GR GP

−1

a. Measurements of the process output indicate a disturbance n. Cal-
culate the transfer functions from n to y and n to u.

b. Let GP(s) = 1
s+1 and assume that the disturbance consists of a

sinusoid n(t) = A sinω t. What will u and y become, after the decay
of transients?

c. Assume that K = 1 and A = 1 in the previous sub-assignment.
Calculate the amplitude of oscillation in u and y for the casesω = 0.1
and 10 rad/s, respectively.

4.4 The below figure shows a block diagram of a gyro stabilized plat-
form. It is controlled by an motor which exerts a momentum on the
platform. The angular position of the platform is sensed by a gyro-
scope, which outputs a signal proportional to the platform’s devia-
tion from the reference value. The measurement signal is amplified
by an amplifier with transfer function GR.

ΣΣ
θ ref

M

θ
GR(s) K

−1

1
Js2

It is desired that step changes in the reference θ ref or the disturbance
momentum M on the platform do not result in persisting angular
errors. Give the form of the transfer function GR, which guarantees
that the above criteria hold. Hint: Postulate GR(s) = Q(s)/P(s)

4.5 When heating a thermal bath, one can assume that the tempera-
ture increases linearly with 1○C/s. The temperature is measured by
means of a thermocouple with transfer function

G(s) =
1

1+ sT

with time constant T = 10 s.
After some initial oscillations, a stationary state, in the sense that
the temperature measurement increases with constant rate, is reached.
At a time instant, the temperature measurement reads 102.6○C. Cal-
culate the actual temperature of the bath.
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4.6 Consider the system G0(s) with the following asymptotic gain curve.
Assume that the system lacks delays and right half plane zeros.

log

log

incline: −1

incline: −2

G0

G0

ω = 1 ω = 5 ω

= 1

Further assume that the system is subject to negative feedback and
that the closed loop system is stable. Which of the following inputs
can be tracked by the closed loop system, without a stationary error?

Assume that r(t) = 0 for t < 0, and that the constants a, b and c
&= 0.

a. r(t) = a

b. r(t) = bt

c. r(t) = ct2

d. r(t) = a+ bt

e. r(t) = sin(t)

4.7 In a simple control circuit, the process and controller are given by

GP(s) =
1

(s+ 1)3
and GR(s) = 6.5, respectively.

a. Determine the sensitivity function S(s).

b. The gain plot of the sensitivity function is given below. How much
are constant load disturbances damped by the control circuit (in
closed loop, as compared to open loop)? At which angular frequency
does the control circuit exhibit the largest sensitivity towards dis-
turbances and by how much are disturbances amplified at most?
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4.8 The below figure shows the gain curves of the sensitivity function
S and complementary sensitivity function T for a normal control
circuit.
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a. Determine which curve corresponds to the sensitivity function and
complementary sensitivity function, respectively.

b. Give the frequency range where disturbances are amplified by the
feedback loop, and the frequency range where they are damped by
the feedback loop. What is the maximum gain of disturbance ampli-
fication?

c. Give the frequency ranges where the output exhibits good tracking
of the reference signal.

d. What is the minimal distance between the Nyquist curve of the open
loop system and the point −1 in the complex plane? What does this
say about the gain margin?
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5. Stability

5.1 Consider the linear time invariant system

dx

dt
=







0 −1
1 0





 x +







1

0





u

y=


 1 −1


 x

a. Is the system asymptotically stable?

b. Is the system stable?

5.2 In a simple control loop, the open loop transfer function is given by

Go(s) = GR(s)GP(s) =
K

s(s+ 2)

Draw the root locus of the characteristic equation of the closed loop
system, with respect to the gain parameter K .

5.3 A simple control loop has the open loop transfer function

Go(s) = GR(s)GP(s) =
K (s+ 10)(s+ 11)
s(s+ 1)(s+ 2)

a. Which values of K yield a stable closed loop system?

b. Sketch the characteristics of the root locus.

5.4 Does the transfer function

G(s) =
s+ 4

s3 + 2s2 + 3s+ 7

have any poles in the right half plane?

5.5 The figure below shows the block diagram of a printer.

a. Which values of the gain K yield an asymptotically stable system?

b. The goal is to track a reference which increases linearly with rate
0.1 V/s, and guarantee a stationary error of less than 5 mV. Can
this be achieved by adequate tuning of the gain K?

Σ
r y

K

s+ 2
1

s(s+ 1)

−1
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5.6 The open loop transfer function of a simple control loop is given by

Go(s) = GR(s)GP(s) =
K

s(s+ 1)(s+ 2)

Use Cauchy’s argument principle and the Nyquist theorem in order
to find the gains K that result in a stable closed loop system.

5.7 Consider the Nyquist curves in figure 5.1. Assume that the corre-
sponding systems are controlled by the P controller

u = K (r − y)

In all cases the open loop systems lack poles in the right half plane.
Which values of K yield a stable closed loop system?

Figure 5.1 Nyquist curves in assignment 5.7.

5.8 The transfer function of a process is given by

Gp(s) =
1

(s+ 1)3

The loop is closed through proportional feedback

u = K (r − y)

Use the Nyquist criterion to find the critical value of the gain K (i.e.
the value for which the system transits from stability to instability).
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5.9 The Nyquist curve of a system is given in figure 5.2. The system is
stable, i.e. lacks poles in the right half plane.

Assume that the system is subject to proportional feedback

u = K (r − y)

Which values of the gain K result in a stable closed loop system.

Figure 5.2 Nyquist curve of the system in assignment 5.9.

5.10 In order to obtain even product quality in a cement oven, it is crucial
that the burn zone temperature is held constant. This is achieved
by measuring the burn zone temperature and controlling the fuel
flow with a proportional controller. A block diagram of the system
is shown in figure 5.3.

Σ GG

-1

R P

reference
temperature

fuel
flow

burner zone
temperature

Figure 5.3 Block diagram of the cement oven with temperature controller in
assignment 5.10.
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Find the maximal value of the controller gain K , such that the closed
loop system remains stable? The transfer function from fuel flow to
burn zone temperature is given by

GP(s) =
e−9s

(1+ 20s)2

5.11 In a distillation column, the transfer function from supplied energy
to liquid phase concentration of a volatile component is

GP(s) =
e−sL

1+ 10s

where time is measured in minutes. The process is controlled by a
PI controller with transfer function

GR(s) = 10
(

1+
1

2s

)

What is the maximal permitted transportation delay L, yielding at
least a 10○ phase margin?

5.12 A process with transfer function GP(s) is subject to feedback ac-
cording to figure 5.4. All poles of GP(s) lie in the left half plane and

Σ
r y

K GP(s)

−1

Figure 5.4 The closed loop system in assignment 5.12.

the Nyquist curve of GP is shown in figure 5.5. It is assumed that
argGP(iω ) is decreasing and that GP(s) has more poles than zeros.
Further, it holds that the closed loop system is stable for K = 1.
Which of the below alternatives are true? Motivate!

a. The gain margin Am < 2 for K = 1.

b. The phase margin ϕm < 45○ for K = 1.

c. The phase margin decreases with decreasing gain K .

d. For K = 2 the closed loop system becomes unstable.
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Figure 5.5 Nyquist curve of the process GP(s) in assignment 5.12.

5.13 The Bode plot of the open loop transfer function, Go = GRGP, is
shown in Figure 5.6. Assume that the system is subject to negative
feedback.

a. How much can the the gain of the controller or process be increased
without making the closed loop system unstable?

b. How much additional negative phase shift can be introduced at the
cross-over frequency without making the closed loop system unsta-
ble?
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Figure 5.6 Bode plot of the open loop system in figure 5.13.
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5.14 A Bode plot of the open loop transfer function of the controlled lower
tank in the double tank process is shown in figure 5.7. What is the
delay margin of the system?
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Figure 5.7 Bode plot of the open loop transfer function of the controlled lower
tank in the double tank process in problem 5.14.
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6. Controllability and Observability

6.1 A linear system is described by the matrices

A =






−1 1

0 −2





 B =







β

1





 C =



 0 γ


 D = 0

a. For which values of β is the system controllable?

b. For which values of γ is the system observable?

6.2 A linear system is described by the matrices

A =











−2 1 2

1 0 0

0 1 0











B =











4

−2
1











C =


−1 0 −1




Find the set of controllable states.

6.3 Consider the system

dx

dt
=







−2 −1
1 0





 x +







1

2





u

y =


 1 1


 x

Is it observable? If not, find the set of unobservable states.

6.4 Consider the system

dx

dt
=







−1 0

0 −2





 x +







1

0





u, x(0) =







1

1







Which of the states ( 3 0.5 )T , (5 5 )T , ( 0 0 )T , (10 0.1 )T or
(1 −0.5 )T can be reached in finite time?

6.5 Consider the following system with two inputs

dx

dt
=







−2 3

1 −4





 x +







1 8

2 6













u1

u2







y =


 3 7


 x

a. Is it controllable?

b. Assume that we only have authority over u1. Is the system control-
lable in this case?

c. Assume that the two inputs are coupled, so that u1+2u2 = 0. Is the
system controllable in this case?
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6.6 Consider the following system

dx

dt
=











−1 1 0

−5 0 0

0 0 2










x +











0

0

1










u

y =


 1 0 1


 x

a. Is the system controllable? Find the set of controllable states.

b. Is the system observable? Find the set of unobservable states.

6.7 A dynamic system is described by the state space model below

ẋ =






−2 2

0 −3





 x +







5

0





u

y =


 1 0


 x

a. Is the system controllable? Which states can be reached in finite
time from the initial state x(0) = (0 0 )T?

b. Calculate the transfer function of the system.

c. Can the same input-output relation be described with fewer states?
Write down such a representation, if possible.
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7. PID Control

7.1 A PID controller has the transfer function

GR(s) = K
(

1+
1

Tis
+ Tds

)

a. Determine the gain and phase shift of the controller at an arbitrary
frequency ω .

b. At which frequency does the controller have its minimal gain? What
is the gain and phase shift for this frequency?

7.2 The process

G(s) =
1

(s+ 1)3

is controlled by a PID controller with K = 2, Ti = 2 and Td = 0.5.
In order to investigate the effect of changing the PID parameters,
we will change K , TI and Td by a certain factor, one at a time. We
will observe how this affects both the step response (from reference
and load disturbance) and the Bode plot of the controlled open loop
system.

The reference is a unit step at t = 0 whereas the load disturbance
is a negative unit step.

a. We start by studying what happens when the parameters are quadru-
pled, one at a time. Figure 7.1 shows the nominal case (K ,Ti,Td) =
(2, 2, 0.5) (solid curves) together with the cases (8, 2, 0.5), (2, 8, 0.5)
and (2, 2, 2). Pair the three Bode plots and the step responses of
figure 7.1 with the three cases.

b. We now study what happens when each parameter is decreased by
a factor 2. The nominal case (K ,Ti,Td) = (2, 2, 0.5) (solid curves) is
shown in figure 7.2 together with the cases (1, 2, 0.5), (2, 1, 0.5) and
(2, 2, 0.25).
Pair the three Bode plots and the three step responses in figure 7.2
with these three cases.
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Figure 7.1 Bode plot and step response for the case when the PID parameters
in sub-assignment 7.2b have been multiplied by four. The solid curves correspond
to the nominal case.
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Figure 7.2 Bode plot and step response for the case when the PID parameters
in sub-assignment 7.2b have been divided by two. The solid curves correspond to
the nominal case.
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7.3 The steer dynamics of a ship are approximately described by

J
dr

dt
+ Dr = Cδ

where r is the yaw rate [rad/s] and δ is the rudder angle [rad].
Further, J [kgm2] is the momentum of inertia wrt the yaw axis of
the boat, D [Nms] is the damping constant and C [Nm/rad] is a
constant describing the rudder efficiency. Let the rudder angle δ be
the control signal. Give a PI controller for control of the yaw rate,
such that the closed loop system obtains the characteristic equation

s2 + 2ζ ω s+ω 2 = 0

7.4 An electric motor can approximately be described by the differential
equation

J
d2θ

dt2
+ D

dθ

dt
= ki I

where J is the moment of inertia, D is a damping constant and ki is
the current constant of the motor. Further, θ denotes the turning an-
gle and I the current through the motor. Let θ be the measurement
signal and I the control signal. Determine the parameters of a PID
controller such that the closed loop system obtains the characteristic
equation

(s+ a)(s2 + 2ζ ω s+ω 2) = 0
Discuss how the parameters of the controller depend on the desired
specifications on a, ζ and ω .

7.5 a. Draw the Bode plot of a PI controller (let K = 1 and Ti = 1).

b. Draw the Bode plot of a PD controller (let K = 1 and Td = 15).

7.6 A cement oven consists of a long, inclined, rotating cylinder. Sed-
iment is supplied into its upper end and clinkers emerge from its
lower end. The cylinder is heated from beneath by an oil burner. It
is essential that the combustion zone temperature is kept constant,
in order to obtain an even product quality. This is achieved by mea-
suring the combustion zone temperature and controlling the fuel
flow with a PI controller. A block diagram of the system is shown in
figure 7.3.

The transfer function from fuel flow to combustion zone temperature
is given by

GP(s) =
e−9s

(1+ 20s)2

and the transfer function of the controller is

GR(s) = K (1+
1

sTi
)

Use Ziegler-Nichol’s frequency method to determine the parameters
of the controller.
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Figure 7.3 Block diagram of a cement oven with temperature controller.

7.7 Use Ziegler-Nichol’s step response and frequency method, to deter-
mine the parameters of a PID controller for a system with the step
response and Nyquist curve given in figure 7.4.

7.8 Consider a system with the transfer function

G(s) =
1

s+ 1
e−s

a. Draw the step response of the system and use Ziegler-Nichol’s step
response method to determine the parameters of a PID controller.
Write down the values of the obtained controller parameters K , Ti
and Td.

b. Use Ziegler-Nichol’s frequency method to determine the parameters
of a PID controller. Compare it to the controller which was obtained
using Ziegler-Nichol’s step response method in sub-assignment a.

7.9 Consider a system with transfer function

G(s) =
1

(s+ 1)3

Calculate the parameters K , Ti and Td of the PID controller, by
applying Ziegler-Nichol’s frequency method.

7.10 A process is to be controlled by a PID controller obtained through
Ziegler-Nichol’s methods.

a. Use the step response method for the process with the solid step
response curve in figure 7.5.

b. The Nyquist curve of the same system is shown in figure 7.6.

The point marked ’o’ corresponds to the frequency ω = 0.429 rad/s.
Apply the frequency method to the process.

c. Unfortunately the step response method results in an unstable closed
loop system. The frequency method yields a stable but poorly damped
system. The reason why the step response method works so badly,
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Figure 7.4 Step response and Nyquist curve of the system in assignment 7.7.

is that it tries to approximate the process with a delayed first order
system (the dashed step response above).
By exploiting the Nyquist curve, one can obtain PID parameters
yielding the solid curve step response in figure 7.7. The dashed and
dotted curves were obtained through the step response method.

How do you think K has changed in the third method, as compared
to the Ziegler-Nichol’s methods (increase or decrease)?
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8. Lead-Lag Compensation

8.1 Consider the following frequency domain specifications for a closed
loop control system

A 'G(0)'
B Bandwidth

C Resonance peak

together with the specifications in the singularity plot

D The distance between the dominant poles and the origin

E The number of poles

F The angle ϕ which is made up by the position vector of the dom-
inant poles and the negative real axis

For each of the groups above, which specifications are foremost as-
sociated with

a. The speed of the system.

b. The overshoot at reference steps.

8.2 A second order system has the Bode plot shown in figure 8.1.

Figure 8.1 Bode plot of the system in assignment 8.2.
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We would like to connect a link G2 in series with the system, in
order to increase the speed of the closed loop system. The cross-over
frequency, ω c, (the angle for which 'G' = 1) is used as a measure
of the system’s speed. Which of the following G2-candidates yield a
faster system?

A G2 = K , K > 1

B G2 =
1

s+ 1

C G2 =
s+ 1
s+ 2

D G2 = e−sT , T > 0

8.3 A system has the transfer function

GP(s) =
1

s(s+ 1)(s+ 2)

The system is part of a feedback loop together with a proportional
controller with gain K = 1. The control error of the resulting closed
loop system exhibits the following behavior: e(t) → 0, t → ∞ when
the input is a step and e(t) → 2, t→∞ when the input is a ramp.
Design a compensation link Gk(s) which together with the propor-
tional controller decreases the ramp error to a value less than 0.2.
Also, the phase margin must not decrease by more than 6○.

8.4 Consider a system with the following transfer function

GP(s) =
1.1

s(s+ 1)

A proportional controller with gain K = 1 is used to close the loop.
However, the closed loop system becomes too slow. Design a compen-
sation link, Gk(s), that roughly doubles the speed of the closed loop
system, without decreasing its phase margin.

8.5 Consider the system

G1(s) =
1

s(s+ 1)(s+ 2)

If controlled by a proportional controller with gain K = 1, the sta-
tionary error of the closed loop system is e = 0 for a step input
(r = 1, t > 0) and e = 2 for a ramp input (r = t, t > 0). One wants
to increase the speed of the system by a factor 3, without compro-
mising its phase margin or the ability to eliminate stationary errors.
Device a compensation link Gk(s) that fulfils the above criteria.

8.6 A servo system has the open loop transfer function

Go(s) =
2.0

s(s+ 0.5)(s+ 3)
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The system is subject to simple negative feedback and has a step
response according to figure 8.2. As seen from the figure, the system
is poorly damped and has a significant overshoot. The speed however,
is satisfactory. The stationary error of the closed loop system with
a ramp input is e1 = 0.75.

0 10 20 30
0

0.5

1

1.5

2  y(t)

Figure 8.2 Step response of the closed loop servo system in assignment 8.6.

Design a compensation link that increases the robustness of the
system. Do this by increasing the phase margin to φm = 50○ with-
out affecting the speed of the system. (φm = 50○ yields a relative
damping ζ ) 0.5 which corresponds to an overshoot M ) 17%.)
The stationary ramp error of the compensated system must not be
greater than e1 = 1.5.

8.7 Consider a system with the open loop transfer function

G1(s) =
1.5

s(s2 + 2s+ 2)

The system is subject to simple negative feedback. The settling time
(5%) is Ts = 8.0 s, the overshoot is Mo = 27%, and the stationary
ramp error (r(t) = t) is e1 = 1.33.
Device a phase lag compensation link

Gk(s) = K
s+ a
s+ a/M

such that the stationary ramp error of the closed loop system is de-
creased to e1 = 0.1, while speed and damping (stability) are virtually
sustained.
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9. State Feedback and Kalman Filtering

9.1 A linear dynamical system with transfer function G(s) is given. The
system is controllable. Which of the following statements are un-
questionably true?

a. The poles of the closed loop system’s transfer function can be arbi-
trarily placed by means of feedback from all states.

b. The zeros of the closed loop system’s transfer function can be arbi-
trarily placed by means of feedback from all states.

c. If the state variables are not available for measurements, they can
always be estimated by diffrentiating the system output.

d. If the state vector is estimated by a Kalman filter

˙̂x = Ax̂ + Bu+ K (y− Cx̂)

one can obtain an arbitrarily fast convergence of the estimate x̂
towards the actual state vector x, by choice of the matrix K .

9.2 Determine a control law u = lrr − Lx for the system

dx

dt
=







−1 0

0 −2





 x +







1

2





u

y =


 1 1


 x

such that the poles of the closed loop system are placed in −4 and
the stationary gain is 1.

9.3 The position of a hard drive head is described by the state space
model

dx

dt
=







−0.5 0

1 0





 x +







3

0





u

y=


 0 1


 x

a. Determine a state feedback

u = −Lx + lrr

which places the poles of the closed loop system in s = −4± 4i and
results in static gain 1 from reference to output.

b. Determine a Kalman filter

dx̂

dt
= Ax̂ + Bu+ K (y− Cx̂)

for the system. Briefly motivate necessary design choices.
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θ

Figure 9.1 The lunar lander in assignment 9.4.

9.4 Figure 9.1 shows the lunar lander LEM of the Apollo project. We
will study a possible system for controlling its horizontal movement
above the moon surface.

Assume that the lander floats some distance above the moon surface
by means of the rocket engine. If the angle of attack (the angle of
the craft in relation to the normal of the moon surface) is nonzero, a
horizontal force component appears, yielding an acceleration along
the moon surface.

Study the block diagram in figure 9.2 showing the relation between
the control signal u of the rocket engine, the angle of attack, θ , and
the position z. The craft obeys Newton’s law of motion in both the θ

u
ref u θ θ θ z z z 

.. .. . . 
Σ K

1
1/s 1/s 1/s 1/s K

2

m
1

m
2

m
3feedback

Figure 9.2 Block diagram of the lander dynamics along the z-axis.

and z directions. The transfer function from the astronaut’s control
signal ure f to the position z is

Gz(s) =
k1k2
s4

and it is practically impossible to manually maneuver the craft. To
facilitate the astronaut’s maneuvering task, we alter the craft dy-
namics by introducing an internal feedback loop. We are in posses-
sion the following measurement signals:

m1 The time derivative of the attack angle, measured by a rate gyro.

m2 The acceleration in the z direction, measured by accelerometers
mounted on a gyro-stabilized platform.

m3 The speed in the z direction, measured by Doppler radar.
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Design a feedback controller which utilizes these measurements,
and results in a closed loop system with three poles in s = −0.5, and
lets the control signal of the astronaut shall be the speed reference
in the z direction.

9.5 A conventional state feedback law does note guarantee integral ac-
tion. The following procedure is a way of introducing integral action.
Let the nominal system be

dx

dt
= Ax + Bu

y = Cx

Augment the state vector with an extra component

xn+1 =
∫ t

e(s) ds =
∫ t

(r(s) − y(s)) ds

The obtained system is described by

dxe
dt
=







A 0

−C 0





 xe +







B

0





u+







0

1





 r

where

xe =






x

xn+1







A state feedback law for this system results in a control law of the
form

u = −Lx − ln+1xn+1 = −Lexe
This controller, which steers y towards r, obviously has integral ac-
tion. Use this methodology in order to determine a state feedback
controller with integral action for the system

dx

dt
=







0 1

0 0





 x +







0

1





u

y=


 1 0


 x

such that the closed loop system obtains the characteristic polyno-
mial

(s+α )
(

s2 + 2ζ ω s+ω 2
)

= 0

9.6 Consider the system

dx

dt
=







−2 1

1 −2





 x +







1

2





u

y =


 0 1


 x

One wishes to estimate the state variables by means of the model

dx̂

dt
= Ax̂ + Bu+ K (y− Cx̂)

Determine K such that the poles of the Kalman filter are placed in
s = −4.
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9.7 Consider the dynamical system

dx

dt
=







−4 −3
1 0





 x +







1

0





u

y =


1 3


 x

One desires a closed loop system with all poles in −4.

a. Assign feedback gains to all states such that the closed loop system
obtains the desired feature.

b. Assume that only the output y is available for measurement. In
order to use state feedback, the state x must be first be estimated by
means of e.g. a Kalman filter, yielding the estimate x̂. Subsequently,
the control law u = −Lx̂ can be applied.
Is it possible to determine a Kalman filter for which the estimation
error decreases according to the characteristic polynomial (s+ 6)2?

c. Is it possible to determine a Kalman filter for which the estimation
error decreases according to the characteristic polynomial (s+ 3)2?
Briefly comment the obtained results.

9.8 Consider the system

ẋ =






0 1

0 0





 x +







0

1





u

y = x1

a. Design a state feedback u = *rr − *1x1 − *2x2 which yields a closed
loop system with static gain 1 and characteristic equation

s2 + 2ζ ω s+ω 2 = 0

b. Determine a Kalman filter

˙̂x =






0 1

0 0





 x̂ +







0

1





u+







k1

k2





 (y− x̂1)

where the dynamics of the estimation error have the characteristic
equation (s+ a)2 = s2 + 2as+ a2 = 0.

c. Give the equations of the controller which is obtained when the
Kalman filter is combined with a state feedback.

d. Introduce the state variables x and x̃ where x̃ = x− x̂ and write the
closed loop system on state space form. Also give the characteristic
equation of the closed loop system.

e. Write down the transfer function from r to y.
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9.9 Consider the system

ẋ =






0 −2
2 0





 x +







0

1





u

y =


 1 0


 x

a. Design a state feedback u = −*1x1 − *2x2 which yields a closed loop
system

s2 + 2
√
2s+ 4 = 0

Also state a Kalman filter

˙̂x =






0 −2
2 0





 x̂ +







0

1





u+







k1

k2





 (y− x̂1)

which has the characteristic equation s2 + 6s+ 9 = 0.

b. Give the output feedback (state space) equations which are obtained
when the Kalman filter is combined with the state feedback.

c. Introduce the state variable x and x̃ = x − x̂. Write down the char-
acteristic equation of the closed loop system.

d. Consider the controller as a system with input y and output u. Give
the transfer function of this system.

9.10 Consider a process consisting of a ball, rolling on a beam, according
to figure 9.3.

ϕ

x

Figure 9.3 The beam process in assignment 9.10.

The process can be described by the equation

d2x

dt2
= kϕ

where x is the position of the ball and ϕ is the angle of inclination
of the beam. With k = 1 the following state space model is obtained

dx

dt
=







0 1

0 0





 x +







0

1





u

y=


 1 0


 x

where u is the inclination of the beam, x1 is the position of the ball
and x2 its speed.
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However, it is difficult to calibrate the system so that zero input
yields zero output. In order to model this, we introduce an unknown
zero input error in the control signal. The model becomes

dx

dt
=







0 1

0 0





 x +







0

1





 (u+ a)

We can try to eliminate the zero input error a by means of a Kalman
filter in the following way: Introduce a as an extra state variable x3.
Since a is constant we have

dx3
dt
= 0

and the augmented system can be described by the following state
space model

dx

dt
=











0 1 0

0 0 1

0 0 0










x +











0

1

0










u

y =


 1 0 0


 x

a. Is this method of auto-calibration is practically feasible? Why/why
not?

b. Design a Kalman filter with the characteristic equation

(s+α )(s2 + 2ζ ω s+ω 2) = 0

Give the equations of the Kalman filter and try to interpret their
meaning intuitively.
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10. Controller Structures

10.1 Figure 10.1 shows a block diagram of the temperature control system
in a house. The reference temperature (the thermostat set point) is
given by r, the output y is the indoor temperature and the distur-
bance d is due to the outdoor temperature. The transfer function
G1(s) represents the dynamics of the heating system and G2(s) rep-
resents the dynamics of the air inside the house. The controller GR
is a P controller with gain K = 1.
Assume that the influence d of the outdoor temperature can be ex-
actly measured. Determine a feedforward link H , such that the in-
door temperature becomes independent of the outdoor temperature.
What is required in order to obtain a good result from the feedfor-
ward?

GR

H

G1 G2

−1

Σ Σ Σ
r u

d

y

Figure 10.1 Block diagram of the temperature control system in a house.

10.2 Figure 10.2 shows a block diagram of a level control system for a
tank. The inflow x(t) of the tank is determined by the valve position

Σ ΣK ΣG G

G

V T

F

−1

−1

h

v

h
ref x

feedforward

P controller valve tank

Figure 10.2 Block diagram of the level control system in assignment 10.2.

and the outflow v(t) is governed by a pump. The cross section of the
tank is A = 1 m2.
The assignment is to control the system so that the level h in the
tank is held approximately constant despite variations in the flow
v. The transfer function of the valve from position to flow is

Gv(s) =
1

1+ 0.5s
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The tank dynamics can be determined through a simple mass bal-
ance.

a. Assume that GF = 0, i.e. that we don’t have any feedforward. Design
a P controller such that the closed loop system obtains the charac-
teristic polynomial (s+ω )2.
How large does ω become? What stationary level error is obtained
after a 0.1 step in v(t)?

b. Design a PI controller which eliminates the stationary control error
otherwise caused by load disturbances.

Determine the controller parameters so that the closed loop system
obtains the characteristic polynomial (s + ω )3. How large does ω
become?

c. To further decrease the influence of load disturbances, we introduce
feedforward based on measurements of v(t). Design a feedforward
controller GF that eliminates the influence of outflow variations by
making corrections to x(t).
Comment. As all variables describe deviations from the operation point,

the reference value for the level h can be set to zero.

10.3 Consider the system in figure 10.3. The transfer function of the
process is given by

GP(s) =
1

s+ 3
and GR(s) is a PI controller with transfer function

GR(s) = K (1+
1

STi
)

K f is a constant feedforward from the reference signal r.

ΣΣ
r u y

K f

GR(s) GP(s)

−1

Figure 10.3 Block diagram showing assignment 10.3.

a. Let K f = 0 and determine K and Ti such that the poles of the
closed loop system are placed in −2±2i, which is assessed to supress
disturbances well.

b. Discuss the influence of the feedforward on the system’s response
to reference changes.

The closed loop transfer function of the system has one zero. Elimi-
nate it by choosing an appropriate constant feedforward K f .
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10.4 The system in assignment 10.3 can be described by an equivalent
block diagram, according to figure 10.4. Write down the transfer

yyr
Σ G

H
fb

ffH

Figure 10.4 Equivalent block diagram in assignment 10.3.

functions Hff(s) and Hfb(s). Discuss the result and consider the ef-
fect of the feedforward when the controller contains a D term.

10.5 The block diagram in figure 10.5 shows cascade control of a tank.
The transfer function G1 describes a valve whereas the transfer

yyr

v1 v2

ΣΣΣΣ G1 G2G R1R2G

−1

−1

y
1

e

Figure 10.5 The cascade in assignment 10.5.

function G2 describes the dynamics of the tank. The objective is to
control the tank level y. This is done by controlling the valve G1 in
an inner control loop, whereas y is controlled by an outer control
loop. Both the control loops are cascaded so that the reference of the
inner loop is the output of the controller in the outer loop.

There are two disturbances in the system, namely the disturbance
flow v2, which is added to the controlled flow y1 and pressure varia-
tions v1 in the flow before the valve. Discuss the choice of controller
(P or PI) in the inner and outer loop, respectively, with respect to
elimination of stationary control errors.

10.6 Consider figure 10.5 and assume that G1(s) = 2
s+2 describes a valve

whereas G2(s) = 1
s describes a tank.

a. Determine a P controller GR1(s) = K1 such that the inner control
loop becomes 5 times faster than the uncontrolled valve.

b. Design a PI controllerGR2(s) = K2(1+ 1
Tis
) for the outer loop, which

yields a system at least 10 times as slow as the closed inner loop.
Approximate the inner loop by Ginner(s) ) Ginner(0).
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10.7 In a certain type of steam boiler, a dome is used to separate the
steam from the water (see figure 10.6). It is essential to keep the
dome level constant after load changes. The dome can be described

Σ

10
−3

s(s + 0.1)
s   0.01−

10
−3

s

F(s)

M(s)

Y(s)

Figure 10.6 Block diagram of steam boiler with dome.

by the model

Y(s) =
10−3

s
M(s) +

s− 0.01
s(s+ 0.1)

10−3F(s)

where Y is the dome level [m], M is the feed water flow [kg/s] and
F is the steam flow [kg/s].

a. Assume a constant steam flow. Design a P controller, controlling the
feed water flow by measuring the dome level. Choose the controller
parameters such that the control error caused by a step in the dome
level goes down to 10 % of its initial value after 10 seconds.

b. Consider the closed loop system. Write down the stationary level
error Y caused by a step disturbance of 1 kg/s in the steam flow F.

c. Consider the initial system. Determine a feedforward link H(s) from
steam flow F(s) to feed water flow M(s), such that the level Y
becomes independent of changes in the steam flow.

10.8 Consider the system in figure 10.7. Assume that the disturbance
d is measurable and that it does not contain frequency components
above 5 rad/s. Write down a feedforward link H(s) which eliminates
at least 90% of the disturbance d. The transfer functions are G1(s) =
1/(s + 1) and G2(s) = 1/s.

yyr
G2G1Σ Σ

d
H

Figure 10.7 Block diagram in assignment 10.8.
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10.9 Assume that a servo motor

GP(s) =
1

s(s+ 1)

is controlled by the P controller GR(s) = 2. What is the delay margin
of the system?

10.10 Consider the same process and controller as in the previous assign-
ment. Now the process is controlled over a very slow network which
introduces a one second delay in the control loop. In order to deal
with this problem an Smith predictor is utilized, see figure 10.8.

a. Assume that the model and the process are identical. What are the
transfer functions for the blocks (Controller, Process, Model, Model
with no delay) in our example?

b. The block diagram of the Smith predictor can be redrawn according
to figure 10.9. What is the transfer function of the Smith predictor
(from e to u) in our example?

c. Use the approximation ex ) 1 + x in order to simplify the transfer
function of the controller. Compare the controller to compensation
links.

controller process

model

model with
no delay

r u y

y1

y2

Σ

Σ

−
−

Figure 10.8 Working principle of the Smith predictor.

GR GP

ĜP − Ĝ0P

−1

r e u y

Smith predictor

Σ Σ

Figure 10.9 Block diagram equivalent to figure 10.8.
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10.11 Figure 10.10 shows the result of a frequency analysis carried out on
the beam (a part of the ’ball on the beam’ process). One sees that
the process dynamics can be well approximated by an integrator, for
low frequencies. One also sees that for high frequencies, the phase
curve diverges in a way which resembles a delay. Consequently, it
would be possible to describe the process by

G(s) =
k

s
e−sL

Use the Bode plot in order to determine approximate values of the
gain k and delay L.
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Figure 10.10 Measured Bode plot of the beam.

47



11. Design Examples

11.1 Depth Control of Submarine

Purpose

This assignment deals with depth control of a submarine from the
forties. Two control methods are tested – PD and state feedback.
The latter method was used in reality.

Background

Depth control of submarines can be achieved by means of varying the
rudder angle β according to figure 11.1. The depth h is measured by

β

α

h

v

Figure 11.1 Depth control of the submarine in assignment 11.1.

means of a manometer. By manually generating a sinusoidal rudder
angle β (by means of a table and watch — don’t forget that this was
the end of the forties) one can use frequency analysis to estimate
the transfer function G(s) from β to h (for a constant speed v).
The resulting Bode plots for three different speeds are shown in
figure 11.2.

Specifications

In this case no specifications were given except "Make it as good as
possible".

Problem Formulation

Assume that the speed is v = 3 knots. The problem lies in computing
a control law which gives a satisfactory settling of the depth h for
the given speed. This does not guarantee equally satisfactory results
at other speeds.
In an initial approach one wanted to control the depth h of the
submarine, solely based on measurements of h.
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Figure 11.2 Bode plot of the estimated transfer function G(s) from β [deg] to h
[m] in assignment 11.1 for the speeds v = 3 (solid curves), 5 (dashed curves) and
7 knots (dotted curves).

a. What is the maximal allowed gain K in order to achieve a stable
closed loop system with a P controller β = K (href − h). Use the
Bode plot in figure 11.2?

b. One wants to obtain a cross-over frequency ω c = 0.03 rad/s, using
a PD controller Gr(s) = K (1+TDs). How shall K and TD be chosen
in order to obtain a 60○ phase margin φm?

c. How is the stability of the closed loop system in (b) affected if the
speed is increased from 3 to 7 knots? Suggest different ways in which
speed variations can be taken into consideration.

For angular frequencies above 0.05 rad/s one can use the approxi-
mation 







Gα β (s) =
kv
s2

Ghα (s) =
v

s

(11.1)

where Gα β (s) and Ghα (s) are the transfer functions from β to α and
from α to h, respectively (see figure 11.3). The constant kv depends
on the speed v.

d. Determine kv by means of the Bode plot in figure 11.2. (1 knot )
1.852 km/h = 1.852/3.6 ) 0.514 m/s.)
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β α hkv

s2
v
s

Figure 11.3 Block diagram of a submarine model which is valid for ω >
0.05 rad/s.

e. Assume that the approximate model

Ghβ (s) =
kvv

s3

is under P control β = K (hre f − h). Determine which values of K
that yield an asymptotically stable system. Does this concur with
the results obtained in sub-assignment a?

One can improve the performance of the control system by utilizing
additional feedback form the trim angle α and its derivative dα /dt.

f. Introduce the states x1 = dα /dt, x2 = α and x3 = h together with
the input u = β . Use the control law u = ur − l1x1 − l2x2 − l3x3 =
ur − Lx and determine L such that the characteristic equation of
the closed loop system becomes

(s+ γ ω 0)(s2 + 2ζ ω 0s+ω 20) = 0

g. The reference href for the depth h is introduced according to

ur = Lrhref

How shall Lr be chosen in order to obtain h = href in stationarity?

One decided to choose ζ = 0.5 and γ = 2 which was considered to
give an adequately damped step response. However, the choice of ω 0
requires some further thought. It should not be chosen too low, since
the approximate model (11.1) is only valid for ω > 0.05 rad/s. On
the other hand, choosing ω 0 too high would result in large rudder
angles caused by the large values of the coefficients l j , j = 1, 2, 3.

h. How large can ω 0 be chosen if a step disturbance in the manometer
signal corresponding to ∆h = 0.1m should not give rise to larger
rudder angles than 5○?

In the actual case ω 0 = 0.1 rad/s was chosen. A semi-automatic
system was evaluated first. The signal u−ur− l1x1− l2x2− l3x3 was
displayed to an operator, who manually tried to keep the signal zero
by means of the ordinary rudder servo. The control action was very
satisfactory. Settling times of 30-60 s were obtained throughout the
speed range. The complete automatic system was then evaluated on
the Swedish submarine ’Sjöborren’ (The Sea Urchin). The accuracy
during march in calm weather was ±0.05 m.
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11.2 Control of Elastic Servo

Purpose

The aim of the assignment is to control the angular speed of a fly-
wheel which is connected to another flywheel by a weak axis. The
second flywheel is driven by a motor. Different control strategies are
evaluated and compared with respect to performance.

Background

Figure 11.4 shows a simplified model of an elastic servo. It could
also constitute a model of a weak robot arm or an elastic antenna
system mounted on a satellite. The turn angles of the flywheels

Figure 11.4 Model of the elastic servo in assignment 11.2.

are denoted ϕ1 and ϕ2, respectively, whereas ω 1 = ϕ̇1 and ω 2 =
ϕ̇2 denote the corresponding angular speeds. The flywheels have
moments of inertia J1 and J2, respectively. They are connected by an
axle with spring constant kf and damping constant df . The system
is subject to bearing friction, which is represented by the damping
constants d1 and d2. One of the flywheels is driven by a DC motor,
which is itself driven by a current-feedback amplifier. The motor
and amplifier dynamics are neglected. The momentum of the motor
is proportional to the input voltage u of the amplifier, according to

M = km ⋅ I = kmkiu

where I is the current through the rotor coils. Momentum equilib-
rium about the flywheel yields the following equations

{

J1ω̇ 1 = −kf (ϕ1 −ϕ2) − d1ω 1 − df (ω 1 −ω 2) + kmkiu

J2ω̇ 2 = +kf (ϕ1 −ϕ2) − d2ω 2 + df (ω 1 −ω 2)

We introduce the state variables










x1 = ω 1

x2 = ω 2

x3 = ϕ1 −ϕ2

and consider the angular speed ω 2 as the output, i.e.

y= kω2 ⋅ ω 2
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This gives us the following state space model of the servo.

ẋ = Ax + Bu =














−d1+dfJ1

df
J1

− kfJ1
df
J2

−df+d2J2

kf
J2

1 −1 0














x +












kmki
J1

0

0












u

y = Cx =


 0 kω2 0


 x

The following values of constants and coefficients have been mea-
sured and estimated for a real lab process.

J1 = 22 ⋅ 10−6 kgm2

J2 = 65 ⋅ 10−6 kgm2

kf = 11.7 ⋅ 10−3 Nm/rad
df = 2e− 5
d1 = 1 ⋅ 10−5 Nm/rad/s

d2 = 1 ⋅ 10−5 Nm/rad/s
km = 0.1Nm/A
ki = 0.027A/V
kω1 = kω2 = 0.0167V/rad/s

Problem Formulation

The input is the voltage u over the motor and we want to control
the angular speed ω 2 of the outer flywheel.
It is desired to quickly be able to change ω c, while limiting the con-
trol system’s sensitivity against load disturbances and measurement
noise. The system also requires active damping, in order to avoid an
excessively oscillative settling phase.

Specifications

1. The step response of the closed loop system should be fairly well
damped and have a rise time of 0.1-0.3 s. The settling time to
±2% shall be at most 0.5 s. A graphical specification of the step
response is given in figure 11.5.

2. Load disturbances must not give rise to any static errors.

3. Noise sensitivity should not be excessive.

Ziegler-Nichols Method

The Bode plot of the transfer function from u to ω 2 is shown in
figure 11.6.

a. Use Ziegler-Nichols frequency method in order to determine suitable
PID parameters.
Ziegler-Nichols method often gives a rather oscillative closed loop
system. However, the obtained parameters are often a reasonable
starting point for manual tuning.
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Figure 11.5 The step response of the closed loop system shall lie between the
dashed lines.
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Figure 11.6 Bode plot of the servo process.

State Feedback and Kalman Filtering

If it is possible to measure all states, the poles of the closed loop
system can be arbitrarily placed through the feedback control law

u(t) = −Lx(t) + Lryr(t)

if the system is also controllable.
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b. The gain Lr is chosen such that the stationary gain of the closed
loop system becomes 1, i.e. y = yr in stationarity. The coefficient Lr
can hence be expressed in L and kω2 . Do this.
In order to meet specification 2, one must introduce integral action
in the controller. One way to achieve this it thorough the control law

u(t) = −Lx(t) + Lryr(t) − Li
∫ t

−∞
(y(s) − yr(s))ds

This can be interpreted as feedback from an ’extra’ state xi according
to {

ẋi = y− yr
u = −Lx + Lryr − Lixi

Figure 11.7 shows a block diagram of the entire system

Σ Σ

x

y y
L

1
s

L−

−1

r u

i

x
i

−

L r

process

Figure 11.7 Block diagram of the state feedback control system in assign-
ment 11.2.

c. How does the augmented state space model look like? Introduce the
notion xe for the augmented state vector.
Since the states are not directly measurable, they must be recon-
structed in some way. A usual way is to introduce a Kalman filter

˙̂x = Ax̂ + Bu+ K (y− Cx̂)

and then close the loop from the estimated states x̂

u = −Lx̂ + Lryr − Lixi

It is, however, unnecessary to estimate xi since we have direct access
to this state. The block diagram of the entire system is shown in fig-
ure 11.8. Let L′ denote the augmented row matrix ( L Li ) and call
the augmented system matrices A′ and B ′, respectively. The problem
consists in finding suitable L, Li and K by placing the eigenvalues
of A′ − B ′L′ and A − KC. Since the both eigenvalue problems are
of a bit too high dimension for enjoyable hand calculations, we use
Matlab to investigate a few choices of pole placements.
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Figure 11.8 Block diagram showing the Kalman filter and state feedback in
assignment 11.2.

In order not to end up with too many free parameters, we place the
poles in a Butterworth pattern. I.e. the poles are equally distributed
on a half circle in the left half plane. We place the eigenvalues of
A′−B ′L′ on a half circle with radius ωm, whereas the eigenvalues of
A− KC are placed on a half circle with radius ω o (see figure 11.9).
A suitable ωm can be obtained from Specification 1, i.e. that the
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Figure 11.9 The pole placement in assignment 11.2.

settling time Ts to reach within 2% of the stationary value must be
less than 0.5 s. A coarse estimation of Ts for a second order system
with relative damping ζ and natural frequency ω is given by

Ts ) −
ln ε

ζ ω

where ε is the maximal deviation from the final value. Since we have
a 4th degree system, we cannot use this approximation directly.
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If we, however, only consider the least damped pole pair (ζ = 0.38
and ω = ωm) in figure 11.9 we obtain

ωm ) −
ln ε

Tsζ
(11.2)

d. Which value of ωm is obtained from the formula (11.2)?
We let ωm = 20 which yields Ts < 0.5 s. We can let Lr = 0 since
we have integral action in the controller and thus stationary closed
loop gain 1. Figure 11.10 shows the step response of the closed loop
system for Lr = 0 and Lr chosen according to sub-assignment b,
respectively. By letting Lr = 0 the step response overshoot is suffi-
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Figure 11.10 Step response of the closed loop system forωm = 20 rad/s. Choosing
Lr according to sub-assignment b yields the system with the larger overshoot. The
other curve is the step response corresponding to Lr = 0.

ciently decreased to fulfill the specification.
We now fix ωm and vary ω o. The following test shall be used to
evaluate the control performance. At time t = 0 there is a unit step
in the reference value yr followed by a load disturbance d = −1 in
the control signal at t = 1 and the introduction of measurement
noise (in y) at t = 3. The variance of the noise is 0.01. The result is
shown in figure 11.11.
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Figure 11.11 Evaluation of control with ωm = 20 and ω o = 10 (solid curves), 20
(dashed curves) and 40 (dotted curves).

e. Which value of ω o seems to be best when it comes to elimination of
load disturbances? Which ω o is best when it comes to suppressing
measurement noise?
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Solutions to Chapter 1. Model Building

and Linearization

1.1 a. With x1 = y and x2 = ẏ the system is given by







ẋ1

ẋ2





 =









0 1

−
k

m
−
c

m















x1

x2





+









0
1

m








f

y =


 1 0










x1

x2







b. which has the solution

y(t) =
1

k

(

1−
σ

ω d
e−σ t sinω dt− e−σ t cosω dt

)

where σ = c/2m and ω d =
√

k/m − c2/4m2.

t

y

1

k

1.2 With states x1 = vout and x2 = v̇out, the system is given by






ẋ1

ẋ2





 =







0 1

− 1
LC − RL













x1

x2





+







0
1
LC





 vin

vout =


 1 0










x1

x2







1.3 a. We can choose e.g. the height h as state variable. The volume change
in the tank is given by

Aḣ = qin − qout

and from Torricelli’s law we obtain qout = a
√
2#h. The sought dif-

ferential equation becomes

ḣ+
a

A

√

2#h =
1

A
qin
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b.

ḣ = −
a

A

√

2#h+
1

A
qin ( = f (h, qin))

qout = a
√

2#h ( = #(h, qin))

c. The outlflow must equal the inflow q0out = q0in. The level is calculated
by letting ḣ = 0, which yields

h0 =
1

2#

(
q0in
a

)2

We determine the partial derivatives

, f
,h
= −

a

A

√

#
2h

, f
,qin

=
1

A

,#
,h
= a

√

#
2h

,#
,qin

= 0

By inserting h = h0 above and introducing variables which denote
deviations from the operating point: ∆h = h − h0, ∆qin = qin − q0in,
∆qout = qout − q0out the linearized system is

∆̇h = −
a

A

√

#
2h0

∆h+
1

A
∆qin

∆qout = a
√

#
2h0

∆h

d. With qin = 0 the nonlinear state space equation becomes

ḣ = −
a

A

√

2#h, h(0) = h0

This is a separable differential equation with solution

h(t) = h0
(

1−
a

A

√

#
2h0
t

)2

, 0 ≤ t ≤
A

a

√

2h0

#

Letting

T =
A

a

√

2h0

#
,

enables us to write the solution on the more compact form

h(t) = h0
(

1−
t

T

)2

, 0 ≤ t ≤ T

The outflow hence becomes

qout(t) = a
√

2#h0
(

1−
t

T

)

= q0out
(

1−
t

T

)

, 0 ≤ t ≤ T
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In the linear state space equation we let ∆qin = −q0in and obtain

∆̇h = −
1

T
∆h−

1

A
q0in, ∆h(0) = 0

with solution

∆h(t) =
T

A
q0in(e

−t/T − 1)

= 2h0(e−t/T − 1), t ≥ 0

and since

∆qout =
A

T
∆h,

the outflow becomes

qout(t) = q0in(e
−t/T − 1) + q0out

= q0oute−t/T , t ≥ 0

t

qout

T

q0out

q0oute
−t/T

q0out (1− t/T)

Comment. Observe that T has the direct physical interpretations of the

time it takes to empty the tank, but also shows up as scaling parameter

in the solution of both the nonlinear and linear cases. Consequently, T is

a measure of the system’s speed.

1.4











ẋ1

ẋ2

ẋ3










=











0 1 0

0 0 1

−1 −2 −3





















x1

x2

x3










+











0

0

1










u

y =


 1 0 0














x1

x2

x3











1.5 a.

ẋ1 = x2
ẋ2 = −

√
x1 − x1x2 + u2

y = x1

61



b. A stationary point implies ẋ1 = ẋ2 = 0. From the first equation
we directly obtain x2 = 0. Subsequently, the second equation yields√
x1 = u2. Hence there are infinitely many stationary points and
they can be parametrized through t as (x01, x

0
2,u

0) = (t4, 0, t).

c. u0 = 1 gives the stationary point (x01, x
0
2,u

0) = (1, 0, 1). We let

f1(x1, x2,u) = x2
f2(x1, x2,u) = −

√
x1 − x1x2 + u2

#(x1, x2,u) = x1

and compute the partial derivatives

, f1
,x1
= 0

, f1
,x2
= 1

, f1
,u
= 0

, f2
,x1
= −

1

2
√
x1
− x2

, f2
,x2
= −x1

, f2
,u
= 2u

,#
,x1
= 1

,#
,x2
= 0

,#
,u
= 0

At the stationary point we have

, f1
,x1
= 0

, f1
,x2
= 1

, f1
,u
= 0

, f2
,x1
= −
1

2

, f2
,x2
= −1

, f2
,u
= 2

,#
,x1
= 1

,#
,x2
= 0

,#
,u
= 0

After a variable substitution, the linearized system can be written






∆̇x1

∆̇x2





 =







0 1

−12 −1













∆x1

∆x2





+







0

2





 ∆u

∆y =


1 0










∆x1

∆x2







1.6 At the sought operating point it holds that

0 = x21x2 + 1

0 = x1x22 + 1

y= arctan
x2
x1
+

π 2

8

which yields x01 = −1, x
0
2 = −1 and y

0 = π
4 +

π 2

8 . Computation of the
partial derivatives now yields

, f1
,x1
= 2x1x2

, f1
,x2
= x21

, f1
,u
=
√
2 cosu

, f2
,x1
= x22

, f2
,x2
= 2x1x2

, f2
,u
= −
√
2 sinu

,#
,x1
=
−x2
x21 + x

2
2

,#
,x2
=

x1

x21 + x
2
2

,#
,u
= 4u
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With the variable substitution

∆u = u−
π

4
∆x1 = x1 + 1
∆x2 = x2 + 1

∆y = y−
π

4
−

π 2

8
.

the linearized system becomes







∆̇x1

∆̇x2





 =







2 1

1 2













∆x1

∆x2





+







1

−1





 ∆u

∆y =


 1
2 −12











∆x1

∆x2





+ π ∆u.

1.7 a. Let x1 = y and x2 = ẏ. The state space form becomes

ẋ1 = x2
ẋ2 = −(1+ x41)x2 +

√
u+ 1− 2

y = x1

b.

∆ ẋ =






0 1

0 −2





 ∆x +







0
1
4





 ∆u

∆y =


 1 0


 ∆x

where ∆x =






∆x1

∆x2





 and ∆u = u − 3, ∆x1 = x1 − 1, ∆x2 = x2 − 0

and ∆y = y− 1.

1.8 a. The nonlinear state space equations are

ẋ1 = x2 = f1(x1, x2,u)

ẋ2 = ω 2x1 −
β

x21
+ u = f2(x1, x2,u)

y = x1 = #(x1, x2,u)

b. At stationarity it holds that

r̈(t) = ω 2r0 −
β

r20
+ 0 = 0

i.e. r30 = β/ω 2. We now compute the partial derivatives













, f1
,x1

, f1
,x2

, f1
,u

, f2
,x1

, f2
,x2

, f2
,u

,#
,x1

,#
,x2

,#
,u














=











0 1 0

ω 2 + 2β/r30 0 1

1 0 0










=











0 1 0

3ω 2 0 1

1 0 0










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The linear system hence becomes

d∆x

dt
=







0 1

3ω 2 0





 ∆x +







0

1





 ∆u

∆y =


 1 0


 ∆x
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Solutions to Chapter 2. Dynamical

Systems

2.1 a. The transfer function is

G(s) = C(sI − A)−1B + D

= (−1 1 )
(
s+ 2 0

0 s+ 3

)−1(
5

2

)

+ 2

=
2s2 + 7s+ 1
s2 + 5s+ 6

.

From the transfer function it is easy to determine the differential
equation

Y(s) = G(s)U(s)

(s2 + 5s+ 6)Y(s) = (2s2 + 7s+ 1)U(s)
ÿ+ 5ẏ+ 6y = 2ü+ 7u̇+ u

b. The transfer function is

G(s) = C(sI − A)−1B + D

= (−2 1 )
(
s+ 7 −2
15 s− 4

)−1(
3

8

)

=

=
2s+ 3

s2 + 3s+ 2
.

The differential equation becomes

Y(s) = G(s)U(s)

(s2 + 3s+ 2)Y(s) = (2s+ 3)U(s)
ÿ+ 3ẏ+ 2y= 2u̇+ 3u

c. G(s) =
5s+ 8
s+ 1

, ẏ+ y = 5u̇+ 8u

d. G(s) =
3s2 + 7s+ 18
s2 + 2s+ 5

, ÿ+ 2ẏ+ 5y = 3ü+ 7u̇+ 18u

2.2 a. Partial fraction expansion of the transfer function yields

G(s) = 2+
2

s+ 3
−
5

s+ 2

and by applying the inverse Laplace transform, one obtains the im-
pulse response

h(t) = L−1G(s) = 2δ (t) + 2e−3t − 5e−2t, t ≥ 0.
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Comment. Because the system matrix was given in diagonal form, another
possibility would have been to compute the impulse response as

h(t) = CeAtB + Dδ (t) =


−1 1









e−2t 0

0 e−3t











5

2




+ 2δ (t), t ≥ 0.

The step response is computed by e.g. integrating the impulse re-
sponse

y(t) =
∫ t

0

h(τ )dτ =
∫ t

0

(

2δ (τ ) + 2e−3τ − 5e−2τ
)

dτ

= 2+
[
5

2
e−2τ −

2

3
e−3τ

]t

0

=
1

6
+
5

2
e−2t −

2

3
e−3t, t ≥ 0.

b. The transfer function has the partial fraction expansion

G(s) =
1

s+ 1
+
1

s+ 2

and the impulse response becomes

h(t) = L−1G(s) = e−t + e−2t, t ≥ 0.

The step response is thus given by

y(t) =
∫ t

0
h(τ )dτ =

3

2
− e−t −

1

2
e−2t, t ≥ 0.

c. h(t) = 5δ (t) + 3e−t, y(t) = 8− 3e−t, t ≥ 0

d. h(t) = 3δ (t) + e−t sin 2t+ e−t cos 2t = 3δ (t) +
√
2e−t sin

(

2t+ π
4

)

y(t) = 3+ 15 e
−t (3+ sin 2t− 3 cos 2t) , t ≥ 0

2.3 After the Laplace transform, one obtains

sX = AX + BU
Y = CX + DU

Solve for X

(sI − A)X = BU

X = (sI − A)−1BU

This gives

Y = C(sI − A)−1BU + DU =
(

C(sI − A)−1B + D
)

U
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2.4 a. The poles are the solutions of the characteristic equation s2+4s+3 =
0, i.e. s = −1 and s = −3. The system lacks zeros.

b. The static gain is G(0) = 1
3 .

c. The input (a step) has the Laplace transform U(s) = 1
s . The output

becomes

Y(s) = G(s)U(s) =
1

s(s2 + 4s+ 3)
=

1

s(s+ 1)(s+ 3)

Inverse Laplace transformation (transform no. 24 with a = 1 and
b = 3 gives

y(t) =
1

3
+
e−3t − 3e−t

6

The step response is shown below.

Step Response

A
m
p
li
tu
d
e

Time [s]
0
0

0.1

0.2

0.3

1 2 3 4 5 6

2.5 a. The poles are the solutions the characteristic equation s2 + 0.6s +
0.25 = 0, i.e. s = −0.3± 0.4i. The system lacks zeros.

b. The static gain is G(0) = 1.

c. The input (a step) has the Laplace transform U(s) = 1
s . The output

becomes

Y(s) = G(s)U(s) =
0.25

s(s2 + 0.6s+ 0.25)
Because this system has complex poles, we first rewrite it as

Y(s) =
ω 2

s(s2 + 2ζ ω s+ω 2)

where ω = 0.5 and ζ = 0.6. We then utilize the inverse Laplace
transformation (transform no. 28) and obtain

y(t) = 1− 1.25e−0.3t sin(0.4t+ 0.9273)

The step response is shown below.
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Step Response

A
m
p
li
tu
d
e

Time [s]
0
0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20

2.6 Laplace transformation of the differential equation mÿ+ cẏ+ ky= f
yields

(ms2 + cs+ k)Y = F

and the transfer function is hence

G(s) =
1

ms2 + cs+ k
.

The poles are s = −c/2m± i
√

k/m − c2/4m2. A change in k implies
a change of the imaginary part of the poles. A change in c affects
both the real and imaginary parts.

The poles cannot end up in the right half plane due to physical
reasons, since c ≥ 0 and m > 0.

2.7 a. G(s) =
1

LCs2 + RCs+ 1

b. G(s) =
1

Ts+ 1
, T =

A

a

√

2h0

#

2.8 a. Initial value

y(0) = lim
s→+∞

2

s+ 2/3
= 0.

Initial derivative

ẏ(0) = lim
s→+∞

2s

s+ 2/3
= 2.

Final value
lim
t→+∞

y(t) = G(0) = 3.
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t

y

1

1

b. Initial value

y(0) = lim
s→+∞

8

s2 + s+ 4
= 0.

Initial derivative

ẏ(0) = lim
s→+∞

8s

s2 + s+ 4
= 0.

Final value
lim
t→+∞

y(t) = G(0) = 2.

The transfer function has two complex poles s = −1/2± i
√
15/2 and

thus the step response should oscillate with period T = 4π /
√
15 ) 3

and damping σ = 1/2.

t

y

1

1

c. The transfer function has poles in −1 and −3 and zeros in −2 and
−4. Polynomial division and partial fraction expansion yields

G(s) = 1+
3

2s+ 2
+

1

2s+ 6
.

The initial value is y(0) = lim
s→+∞

G(s) = 1 and the initial derivative
becomes

ẏ(0) = lim
s→+∞

(
3s

2s+ 2
+

s

2s+ 6

)

= 2.

The final value is lim
t→+∞

y(t) = G(0) = 8/3.
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t

y

1

1

8
3

2.9 y(0) ẏ(0) final value poles period step response

G1 0 0.1 1 −0.1 — —

G2 0 0 1 −1± i
√
3 3.6 A

G3 0 0 — 0.05± i
√
2.00 4.4 E

G4 0 0 −0.25 −0.05± i
√
2.00 4.4 —

G5 0 1 1 −1 — D

G6 0 0 1 −0.4± i
√
3.84 3.2 B

G7 0 0 0.67 −0.5± i
√
2.75 3.8 C

2.10 1 The system has the poles in −1/4 ± i and a zero in −1. The
transfer function is thus

G(s) = K
s+ 1

(s+ 14)2 + 1
) K

s+ 1
s2 + 12 s+ 1

.

The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K &= 0

lim
t→+∞

y(t) = G(0) = K &= 0

The step response is oscillating with period T = 2π /1 ) 6. This
must be step response D.

2 The system has poles in −1 and −2 and a zero in 1. The transfer
function is

G(s) = K
s− 1

(s+ 1)(s+ 2)
The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K &= 0

lim
t→+∞

y(t) = G(0) = −
K

2
&= 0
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We see that the initial derivative and the final value have different
signs. This fits step response F.

3 The system has poles in −1/4 ± i and a zero in 0. The transfer
function is

G(s) = K
s

(s+ 14)2 + 1
) K

s

s2 + 12 s+ 1

The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K &= 0

lim
t→+∞

y(t) = G(0) = 0

The step response is oscillating with period T = 2π /1 ) 6. This is
step response G.

4 The system has poles in−1 and −2 and a zero in−3. The transfer
function is

G(s) = K
s+ 3

(s+ 1)(s+ 2)
.

The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K &= 0

lim
t→+∞

y(t) = G(0) =
3K

2
&= 0

The initial derivative and final value have the same sign. The only
nonoscillative step response which suits these criteria is C.

2.11a.

Y = G1(U + G2Y)
Y(1− G1G2) = G1U

Y =
G1

1− G1G2
U

b.

Y = G2(H1U + G1U + H2Y)
Y(1− G2H2) = (G2H1 + G2G1)U

Y =
G2H1 + G2G1
1− G2H2

U
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c. Introduce the auxiliary variable Z, being the output of G1

Z = G1(U + G3(Z + G2Z))
Z(1− G1G3 − G1G3G2) = G1U

Z =
G1

1− G1G3 − G1G3G2
U

Y =
G2G1

1− G1G3 − G1G3G2
U

d.

Y = G2(−H2Y + G1(U − H1Y))
Y(1+ G2H2 + G2G1H1) = G2G1U

Y =
G2G1

1+ G2H2 + G2G1H1
U

2.12a. Partial fraction expansion yields

G(s) =
s2 + 6s+ 7
s2 + 5s+ 6

=
s+ 1

s2 + 5s+ 6
+ 1 =

−1
s+ 2

+
2

s+ 3
+ 1

One has a certain freedom when choosing the coefficients of the B
and C matrices. However, the products bici remain constant. Let
e.g. b1 = b2 = 1. This enables us to immediately write the system
in diagonal form:

dx

dt
=







−2 0

0 −3





 x +







1

1





u

y =


−1 2


 x +


 1


u

b. First rewrite the system as

G(s) =
b0s+ b1

s2 + a1s+ a2
+ d =

s+ 1
s2 + 5s+ 6

+ 1

The controllable canonical form can be directly read from the trans-
fer function

dx

dt
=







−5 −6
1 0





 x +







1

0





u

y =


 1 1


 x +


 1


u

c. The observable canonical form is obtained in the same manner

dx

dt
=







−5 1

−6 0





 x +







1

1





u

y=


 1 0


 x +


 1


u
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Solutions to Chapter 3. Frequency

Analysis

3.1 a. The output is given by

y(t) = 'G(3i)' sin
(

3t+ argG(3i)
)

where

'G(iω )' =
0.01
√
1+ 100ω 2√

1+ω 2
√
1+ 0.01ω 2

and
argG(iω ) = arctan 10ω − arctanω − arctan 0.1ω

For ω = 3 one obtains 'G(iω )' = 0.0909 and argG(iω ) = −0.003
which gives

y(t) = 0.0909 sin(3t− 0.003)

b. Reading from the plot yields 'G(3i)' ) 0.09 and argG(3i) ) 0. We
obtain

y(t) = 0.09 sin 3t

3.2 a. The output is given by

y(t) = 'G(iω )' sin
(

ω t+ argG(iω )
)

where

'G(iω )' =
∣
∣
∣
∣

10

(iω )2 + 0.5iω + 1

∣
∣
∣
∣
=

10
√

(1−ω 2)2 + (0.5ω )2

and

argG(iω ) = arg
10

(iω )2 + 0.5iω + 1
= − arg

(

(1−ω 2) + 0.5ω i
)

=

















− arctan
0.5ω

1−ω 2
, ω < 1

−π /2, ω = 1

− arctan
0.5ω

1−ω 2
− π , ω > 1

The output becomes

10.4 sin (0.2t− 5.9○), 20.0 sin (t− 90.0○), 0.011 sin (30t− 179.0○)

b. For ω = 0.2 one reads 'G(iω )' ) 10 and argG(iω ) ) −5○. For ω = 1
one reads 'G(iω )' ) 20 and argG(iω ) ) −90○. For ω = 30 one reads
'G(iω )' ) 0.01 and argG(iω ) ) −180○. The output is approximately

10 sin (0.2t− 5○), 20 sin (t− 90○), 0.01 sin (30t− 180○)
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3.3 We use the following general approach to draw Bode plots

• Factor the transfer function of the system.

• Determine the low frequency asymptote (small s).
• Determine the corner frequencies (i.e. the magnitude of the
poles and zeros of the system.)

• Draw the asymptotes of the gain curve from low to high fre-
quencies, aided by the following rules of thumb

– A pole decreases the slope of the gain curve by 1 at the
corner frequency.

– A zero increases the slope of the gain curve by 1 at the
corner frequency.

• Draw the asymptotes of the phase curve from low to high fre-
quencies, aided by the following rules of thumb

– A (stable) pole decreases the value of the phase curve by
90○ at the corner frequency.

– A (stable) zero increases the value of the phase curve by
90○ at the corner frequency.

• Draw the real gain- and phase curves, aided by the asymptotes
and sample curves in the collection of formulae.

a. The transfer function can be written

G(s) = 3 ⋅
1

1+ s/10

Low frequency asymptote: G(s) ) 3.
Corner frequency: ω = 10 rad/s (pole).
The gain curve starts with slope 0 and value 3. The slope decreases
by 1 at ω = 10 rad/s, due to the pole, and thus ends being −1.
The phase curve starts at 0○. The phase is decreased by 90○ at ω =
10 rad/s, due to the pole, and thus ends being −90○.
The asymptotes and the finished Bode plots are shown in figure 3.1.

b. The transfer function can be written

G(s) = 10 ⋅
1

1+ 10s
⋅
1

1+ s

Low frequency asymptote: G(s) ) 10.
Corner frequencies: ω = 0.1 rad/s (pole), ω = 1 rad/s (pole).
The gain curve starts with slope 0 and value 10. The slope is de-
creased by 1 at ω = 0.1 rad/s, due to the first pole, and by 1 at
ω = 1 rad/s, due to the second pole. Thus, the final slope becomes
−2.
The phase curve starts at 0○. The phase is decreased by 90○ at ω =
0.1 rad/s, due to the first pole, and by 90○ at ω = 1 rad/s, due to
the second pole. Thus, the final phase is −180○.
The asymptotes and the finished Bode plot are shown in figure 3.2.
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Figure 3.1 The Bode plot of G(s) = 3
1+s/10 .
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Figure 3.2 Bode plot of G(s) = 10
(1+10s)(1+s) .

c. The transfer function can be written

G(s) = e−s ⋅
1

1+ s

Low frequency asymptote: G(s) ) 1.
Corner frequency: ω = 1 rad/s (pole).
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The delay (e−s) does not affect the gain curve, which starts with
slope 0 and value 1. The slope is decreased by 1 at ω = 1 rad/s, due
to the pole, and the final slope is thus −1.
The phase curve is harder to sketch. One approach is to draw the
asymptotes of the system without the delay and superposition it with
the phase curve of e−s, which can be obtained from the collection of
formulae or by computing some points and interpolating between
these.

Anyway, we see that the phase curve starts at 0○ and that the phase
then decreases both due to the pole (at ω = 1 rad/s) and the delay.
The delay causes the phase to approach −∞ for large ω .

The finished plot is shown in figure 3.3.
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Figure 3.3 Bode plot of G(s) = e−s

1+s .

d. The transfer function can be written

G(s) =
1

s
⋅ (1+ s) ⋅

1

1+ s/10

Low frequency asymptote: G(s) )
1

s
.

Corner frequencies: ω = 1 rad/s (zero), ω = 10 rad/s (pole).
The gain curve starts with slope −1. The slope increases by 1 at
ω = 1 rad/s, due to the zero, and atω = 10 rad/s the slope decreases
by 1, due to the pole. Consequently, the final slope is −1.
The phase curve starts at −90○. The phase increases by 90○ at ω =
1 rad/s, due to the zero, and decreases by 90○ at ω = 10 rad/s, due
to the pole. Consequently, the final phase is −90○.
The finished plot is shown in figure 3.4.
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Figure 3.4 Bode plot of G(s) = 1+s
s(1+s/10) .

e. The transfer function can be written

G(s) = 2 ⋅
1

s
⋅ (1+ 5s) ⋅

1

1+ 2ζ (s/2) + (s/2)2

where ζ = 0.2.

Low frequency asymptote: G(s) )
2

s
.

Corner frequencies: ω = 0.2 rad/s (zero), ω = 2 rad/s (complex
conjugated pole pair).
The gain curve starts with slope −1. The slope is increased by 1 at
ω = 0.2 rad/s, due to the zero, and decreased by 2 at ω = 2 rad/s,
due to the pole pair. Consequently, the final slope is −2.
The phase curve starts at −90○. The phase is increased by 90○ at
ω = 0.2 rad/s, due to the zero, and decreased by 180○ atω = 2 rad/s,
due to the pole pair. Consequently, the final phase is −180○.
The low damping (ζ = 0.2) of the complex conjugated pole pair gives
the gain curve a resonance peak at ω = 2 rad/s. Additionally, the
phase decreases rapidly at this frequency, cf. the sample curves in
the collection of formulae. The finished plot is shown in figure 3.5.

3.4 a. The Nyquist curve start in 3 (the static gain) for ω = 0 rad/s. Both
the gain and phase are strictly decreasing, which makes the curve
turn clockwise while its distance to the origin decreases. The gain
and phase approach 0 and −90○, respectively, for large values of ω .
The curve is thus bound to the fourth quadrant and approaches the
origin along the negative imaginary axis as ω →∞.
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Figure 3.5 Bode plot of G(s) = 2(1+5s)
s(1+0.2s+0.25s2) .

Aided by this analysis, one can now sketch the Nyquist curve by
choosing a few frequencies (e.g. ω = 1, 10 and 100 rad/s) and draw-
ing the corresponding points in the complex plane. The finished
curve is shown in figure 3.6.
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Figure 3.6 Nyquist curve of G(s) = 3
1+s/10 .

b. The Nyquist curve starts in 10 (the static gain) for ω = 0 rad/s.
Both the gain and phase are strictly decreasing, which makes the
curve turn clockwise while its distance to the origin decreases. The
gain and phase approach 0 and −180○, respectively, for large values
of ω . The curve will thus go from the fourth to the third quadrant,
approaching the origin along the negative real axis as ω →∞.
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The intersection with the negative imaginary axis can be drawn by
reading off the magnitude when the phase is −90○. One can now
sketch the Nyquist curve by choosing a few additional frequencies
(e.g. ω = 0.1, 1 rad/s) and drawing the corresponding points in the
complex plane. The finished curve is shown in figure 3.7.
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Figure 3.7 Nyquist curve of G(s) = 10
(1+10s)(1+s) .

c. The Nyquist curve starts in 1 (the static gain) for ω = 0 rad/s. Both
the gain and phase are strictly decreasing, which makes the curve
turn clockwise while its distance to the origin decreases. The gain
and phase approach 0 and −∞, respectively, for large values of ω .
The curve will thus rotate infinitely many times as it approaches
the origin. The first intersections with the axis can be drawn by
reading off the magnitude when the phase is −90○, −180○, −270○
and −360○, respectively. The finished curve is shown in figure 3.8.
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Figure 3.8 Nyquist curve of G(s) = e−s

1+s .
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3.5 Let the sought transfer function be G(s). The gain curve starts with
slope −1, which indicates that G(s) contains a factor 1s (an inte-
grator). We observe that there are two corner frequencies: ω 1 = 1
and ω 2 = 100 rad/s. The gain curve breaks upwards once at ω 1 and
downward once at ω 2. Hence, the nominator hosts a factor 1 + s,
whereas the denominator contains a factor 1 + s/100. In addition,
G(s) contains a constant gain K . We thus have

G(s) =
K (1 + s)
s(1+ s/100)

We evaluate the low frequency asymptote of the gain curve at e.g.
ω = 0.01 rad/s, in order to determine K . This yields

'G(0.01i)' = K
0.01 = 1 / K = 0.01

Finally we verify that the phase curve matches this system.

3.6 Let the sought transfer function be G(s). The gain curve has two
corner frequencies: ω 1 = 2 and ω 2 = 100 rad/s. The gain curve
breaks downwards once at ω 1 and three times at ω 2. Thus the de-
nominator of G(s) contains the factors (1 + s

2) and (1+
s
100)

3. The
slope of the low frequency asymptote is 1. Thus G(s) has a factor s
in the nominator. Additionally, G(s) contains a constant gain K . We
have

G(s) =
Ks

(1+ s
2)(1+

s
100)

3

The factor K is computed by determining a point on the LF asymp-
tote, e.g. GLF(s) = Ks

'GLF(iω )' = Kω = 4

for ω = 2 rad/s. This gives

K = 2

(Observe that one should use the LF asymptote rather than the
actual gain curve, when computing K .)
Finally we verify by checking that the phase curve matches this
system.
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Solutions to Chapter 4. Feedback

Systems

4.1 a. Laplace transformation of the differential equation yields

sY(s) + 0.01Y(s) = 0.01U(s)

The transfer function GP(s) is thus given by

Y(s) = GP(s)U(s) =
0.01

s+ 0.01
U(s)

b. The transfer function of the closed loop system becomes

G(s) =
GP(s)GR(s)
1+ GP(s)GR(s)

=
0.01
s+0.01K

1+ 0.01
s+0.01K

=
0.01K

s+ 0.01+ 0.01K

c. The desired and actual characteristic polynomials are the same if
all their coefficients match. Identification of coefficients yields

0.1 = 0.01+ 0.01K 0 K = 9

4.2 Since r(t) = 0, the control error becomes e(t) = −y(t). Further, the
closed loop system has to be asymptotically stable.

Y(s) = GP(s)(F(s)−GR(s)Y(s)) 0 Y(s) =
GP(s)

1+ GR(s)GP(s)
F(s)

If f (t) is a unit step, we have F(s) = 1
s .

a. Seek y(∞) for GR = K

y(∞) = lim
s→0
sY(s) = lim

s→0
s

1

(ms2 + ds+ K )
1

s
=
1

K

The function sY(s) has all poles in the left-half plane when the
parameters m, d and K are positive.

b. The same assignment, but with GR(s) = K1 + K2/s. This yields

y(∞) = lim
s→0
s

1

(ms2 + ds+ K1 + K2
s )
1

s

= lim
s→0

s

ms3 + ds2 + K1s+ K2
= 0

under the assumption of stability, which is the case for m > 0, d > 0
and K1 > m

d K2 > 0. Rule: If the disturbance is a step, one needs
at least one integrator before the point in the block diagram where
the disturbance is introduced, in order to make the stationary error
zero.
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4.3 a. For the closed loop system it holds, when R = 0, that

U(s) = K (0− Y(s)) = −K (GP(s)U(s) + N(s))

from which one obtains

U(s) =
−K

1+ KGP(s)
N(s)

Y(s) = GP(s)U(s) + N(s) =
1

1+ KGP(s)
N(s)

(4.1)

b. Inserting GP(s) = 1
s+1 into (4.1) yields the relations

U(s) =
−K (s+ 1)
s+ 1+ K

N(s)

Y(s) = GP(s)U(s) + N(s) =
s+ 1

s+ 1+ K
N(s) =: Gyn(s)N(s)

In stationarity it holds that

y(t) = A'Gyn(iω )' sin(ω t+ argGyn(iω ))

= A
√
1+ω 2

√

(K + 1)2 +ω 2
sin

(

ω t+ arctanω − arctan
ω

K + 1

)

u(t) = −Ky(t)

= −KA
√
1+ω 2

√

(K + 1)2 +ω 2
sin

(

ω t+ arctanω − arctan
ω

K + 1

)

c. With A = 1 and K = 1 the amplitudes of the oscillations in u and y
become

Au =

√

1+ω 2

4+ω 2

Ay =

√

1+ω 2

4+ω 2

For ω = 0.1 rad/s the amplitudes become

Au ) 0.5
Ay ) 0.5

while ω = 10 rad/s yields

Au ) 1
Ay ) 1

4.4 With GP(s) = 1/(Js2) we obtain

E(s) = θ re f (s) − θ (s)

= θ re f (s) − GP(s)(M(s) + KGR(s)E(s))

/ E(s) =
1

1+ KGP(s)GR(s)
θ re f (s) −

GP(s)
1+ KGP(s)GR(s)

M(s)
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Assume a constant disturbance momentum M0d and a constant ref-

erence θ 0re f . We postulate GR(s) = Q(s)/P(S), which gives

E(s) =
1

1+ K
Q(s)
Js2P(s)

⋅
θ 0re f
s
−

1

Js2

1+ K
Q(s)
Js2P(s)

⋅
M0d
s

=
s2JP(s)

s2JP(s) + KQ(s)
⋅

θ 0re f
s
−

P(s)
s2JP(s) + KQ(s)

⋅
M0d
s

The stationary error becomes

e∞ = lim
t→∞
e(t) = lim

s→0
sE(s)

= 0−
P(0)
KQ(0)

M0d = −
P(0)
KQ(0)

M0d

where we have assumed that Q(0) &= 0 and that the conditions for
the final value theorem are fulfilled. We see that P(0) = 0 yields
e∞ = 0. In order to eliminate persistent angular errors caused by
disturbance momenta, it is consequently required to utilize a con-
troller GR(s) with at least one pole in the origin (P(0) = 0).

4.5 The input of the thermocouple is the temperature u(t) of the bath,
which gives

u(t) = t / U(s) =
1

s2

The output y(t) is the reading of the temperature sensor. Thus

Y(s) = G(s)U(s) =
1

1+ sT
⋅
1

s2

For the error e(t) = u(t) − y(t) it holds that

E(s) = U(s) − Y(s) =
1

s2

[

1−
1

1+ sT

]

=
sT

1+ sT
⋅
1

s2

The stationary error is obtained by means of the final value theorem

e(∞) = lim
s→0
sE(s) = lim

s→0

s2T

1+ sT
1

s2
= T = 10

The thermocouple measurement is hence 10○ less than the actual
temperature. I.e. the actual temperature of the bath is 102.6○C +
10○C = 112.6○C.
Observe that the error in this has a bounded limit, despite the fact
that both u(t) and y(t) lack (bounded) limits as t → ∞. It is the
difference between u and y which converges to a constant value.
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4.6 The low frequency asymptote is

GLF(s) =
K

s2

where the constant K is given by

'GLF(iω )' =
K

ω 2
; 'GLF(i)' = 1 / K = 1

At the corner frequency ω 1 = 1 rad/s the slope changes from −2
to 0, and at ω 2 = 5 rad/s it changes from 0 to −1. The transfer
function for the open loop system is thus

Go(s) =
(1+ sT1)2

s2(1+ sT2)

where T1 = 1/ω 1 = 1 and T2 = 1/ω 2 = 0.2.
The transfer function of the closed loop system becomes

G(s) =
Go(s)
1+ Go(s)

The output is Y(s) = G(s)R(s) and the error E(s) becomes

E(s) = R(s) − Y(s) =
1

1+ Go
R(s) =

s2(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

R(s)

a.

R(s) =
a

s
/ e∞ = lim

t→∞
e(t) = lim

s→0
sE(s)

= lim
s→0

as2(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

= 0

The system can thus track inputs r(t) = a without a stationary
error.

b.

R(s) =
b

s2
/ e∞ = lim

t→∞
e(t) = lim

s→0
sE(s)

= lim
s→0

bs(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

= 0
−

The system can also track inputs r(t) = bt without a stationary
error.

c.

R(s) =
2c

s3
/ e∞ = lim

t→∞
e(t) = lim

s→0
sE(s)

= lim
s→0

2c(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

= 2c &= 0

The input r(t) = ct2, however, yields a stationary error.
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d. Superposition can be used, since the closed loop system is linear
and time invariant (LTI). Here, the input is the sum of the inputs
in sub-assignments a and b. The total (superpositioned) stationary
error thus becomes e∞ = 0+ 0 = 0.

e. The input r(t) = sin(t) yields

R(s) =
1

1+ s2
/ lim

s→0
sE(s)

= lim
s→0
s

s2(1+ 0.2s)
(s2(1+ 0.2s) + (1+ s)2)(1+ s2)

= 0

but the input r(t) = sin(t) yields the output y(t) = yo sin(t + φ),
where

yo = 'G(i)' , φ = ar# G(i)
once transients have decayed. The error e(t) = r(t) − y(t) is thus
also a sinusoid and the limit

lim
t→∞
e(t)

does not exist. This shows that the final value theorem should not be
used without caution. It is only valid for cases where a limit really
exists. The criterion is that all poles of sE(s) must have negative
real parts. (The factor s2+1 in the denominator yields two poles on
the imaginary axis.)

4.7 a. The sensitivity function is given by

S(s) =
1

1+ GP(s)GR(s)
=

1

1+ 6.5
(s+1)3

=
s3 + 3s2 + 3s+ 1
s3 + 3s2 + 3s+ 7.5

b. For ω = 0 rad/s we have 'S(iω )' = 1/7.5. Constant load distur-
bances are thus damped by a factor 7.5. The sensitivity functions
has its maximum value 'S(iω )' =) 10 at ω ) 1.6 rad/s.

4.8 a. The left curve shows the complementary sensitivity function, whereas
the sensitivity function is given by the right curve.

b. The disturbances at various frequencies are amplified according to
the gain curve of the sensitivity function. Disturbances below 2 rad/s
are hence reduced, disturbances in the range 0.2 to 2 rad/s are
amplified and disturbances above 2 rad/s pass straight through.
The worst case gain, 2, is obtained at the frequency 0.55 rad/s.

c. The complementary sensitivity function, corresponding to the closed
loop transfer function from r to y, lies close to 1 up to approximately
0.7 rad/s.

d. The maximal magnitude of the sensitivity function equals the in-
verse of the minimal distance between the Nyquist curve and the
point −1. The minimal distance is thus 1/2 = 0.5. The distance to
−1, as the Nyqist curve intersects the negative real axis, must hence
be at least 0.5. This implies that the gain margin is at least 2.
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Solutions to Chapter 5. Stability

5.1 a. To be asymptotically stable, all eigenvalues of the system matrix A
must lie strictly within the left half plane (LHP). I.e. Re(λ i) < 0 ∀
i.

The eigenvalues of A are given by the characteristic equation

det(λ I − A) = 0

which in this case has two solutions, λ1 = −i and λ2 = i. Since
the eigenvalues do not lie strictly within the LHP, the system is not
asymptotically stable.

b. If all the eigenvalues of A lie strictly within the LHP, we are guar-
anteed stability. If any eigenvalue lies strictly in the RHP we have
an unstable system. If, on the other hand, there are eigenvalues on
the imaginary axis, the system can be either stable or unstable.

In this example there are no eigenvalues in the RHP. Additionally,
all eigenvalues on the imaginary axis are distinct. This tells us that
the system is stable.

5.2 The closed loop transfer function is given by

G(s) =
Go
1+ Go

=
K

s2 + 2s+ K

The poles of the closed loop system are given by the characteristic
equation

s2 + 2s+ K = 0 / s = −1±
√
1− K

For K = 0 the roots s1,2 = 0,−2, i.e. the poles of the open loop
system, are obtained. The closed loop system G(s) has a double pole
in s = −1 for K = 1. And as K →∞ the roots become

s1,2 = −1± i∞

The root locus, i.e. the roots of the characteristic equation as K
varies, is shown in figure 5.1 .

5.3 The open loop transfer function of the system is

Go(s) =
K (s+ 10)(s + 11)
s(s+ 1)(s+ 2)

= K
Q(s)
P(s)

The closed loop system becomes

G(s) =
Go(s)
1+ Go(s)

=
KQ(s)

P(s) + KQ(s)

The characteristic equation is thus

P(s) + KQ(s) = 0
0s(s+ 1)(s+ 2) + K (s+ 10)(s+ 11) = 0
0s3 + (3+ K )s2 + (2+ 21K )s + 110K = 0
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Figure 5.1 Root locus of the system in assignment 5.2.

a. The criterion for stability is that all coefficients of the characteristic
polynomial

s3 + (3+ K )s2 + (2+ 21K )s + 110K

are positive and that

(3+ K )(2 + 21K ) > 110K

The inequality yields

K 2 −
15

7
K +

2

7
> 0

It is fulfilled for K > 2 and K < 1/7. The closed loop system is
hence stable for

0 < K <
1

7

and
K > 2

b. Find the root locus for the characteristic equation, P(s)+KQ(s) = 0

s(s+ 1)(s+ 2) + K (s+ 10)(s+ 11) = 0 (5.1)

Let n = the degree of P(s) and m = the degree of Q(s). The root
locus has a maximum of max(n,m) = 3 branches.
Starting points:

P(s) = 0 / s = 0,−1,−2
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Ending points:

Q(s) = 0 / s = −10,−11

The third branch will approach infinity.

To the right of each real point of the root locus, there must exists
an odd number of zeros of P(s) and Q(s). The points x, which fulfill
this are

x < −11 − 10 < x < −2 − 1 < x < 0

The root locus has 'n−m' = 1 asymptote. This is the negative real
axis, since the range x < −11 on the real axis belongs to the root
locus.

The intersection with the imaginary axis is obtained by introducing
s = iω (4) above. This yields

−(3+ K )ω 2 + 110K + i(−ω 3 + (2+ 21K )ω ) = 0

The resulting equation has a solution ω = K = 0 and
{

−(3+ K )ω 2 + 110K = 0

ω 2 − (2+ 21K ) = 0

gives K = 1/7, ω = ±
√
5 or K = 2, ω = ±

√
44.

We know from sub-assignment a that the closed loop system is un-
stable for 1/7 < K < 2. Consequently, the root locus lies in the
right half plane for these values of K . The principal shape of the
root locus is shown in figure 5.2.

Figure 5.2 Root locus of the system in assignment 5.3.

5.4 The characteristic equation is

s3 + 2s2 + 3s+ 7 = 0
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The transfer function is stable if all coefficients are positive, which
is the case, and if the product of the s2- and s1 coefficients is greater
than the s0 coefficient. The transfer function is therefore not stable,
since 2 ⋅ 3 < 7.

5.5 a. The open loop transfer function of the system is

G0(s) =
K

s(s+ 1)(s + 2)

The closed loop transfer function is thus

Gcl(s) =
G0(s)
1+ G0(s)

=
K

s(s+ 1)(s+ 2) + K

The system is asymptotically stable if all zeros of the characteristic
polynomial

s(s+ 1)(s+ 2) + K = s3 + 3s2 + 2s+ K

have negative real parts. This is the case if all coefficients are pos-
itive and if

3 ⋅ 2 > K

The system is thus asymptotically stable if 0 < K < 6.

b. Now we want to study the dependence of K on the stationary error,
as the reference increases as a linear function of time. The Laplace
transform of the control error is given by

E(s) =
1

1+ G0
R(s) =

s(s+ 1)(s + 2)
s(s+ 1)(s+ 2) + K

R(s)

With r(t) = 0.1t, i.e. R(s) = 0.1/s2, we obtain

E(s) =
0.1(s+ 1)(s+ 2)

s(s(s+ 1)(s+ 2) + K )

The signal sE(s) has all poles in the left-half plane when 0 < K < 6,
according to sub-assignment a. For this case we can utilize the final
value theorem

e(∞) = lim
s→0
s
0.1(s+ 1)(s+ 2)

s(s(s+ 1)(s+ 2) + K )
=
0.2

K

In order to obtain a stationary error less than 5 mV for the given
reference, it is required that K > 40. For such large values of K
the system is, however, not stable. It it hence impossible to meet the
specification.

5.6 The closed loop transfer function is

G(s) =
Go(s)
1+ Go(s)
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Introduce the notations N = the number of RHP zeros of 1+Go(s),
P = the number of RHP poles of 1 + Go(s) (= the number of RHP
poles of Go(s)). The open loop system Go(s) lacks RHP poles, which
means that P = 0. We use Cauchy’s argument principle to calculate
N .

Let K = 1 and calculate Go(s) as s traverses the curve C according
to figure 5.3. We note that G0 has a pole in the origin. By drawing
a small half circle around the origin in figure 5.3, we avoid singu-
larities on the contour C. The curve C enclosed the entire RHP as
R →∞ and r → 0.

Im

R

r

C

Re

Figure 5.3 The Nyquist contour C.

For the positive imaginary axis (s = iω ) we have the following

Go(iω ) =
(1− iω )(2− iω )

iω (1+ iω )(2+ iω )(1− iω )(2− iω )

=
−3

(ω 2 + 1)(ω 2 + 4)
+ i

(ω 2 − 2)
ω (ω 2 + 1)(ω 2 + 4)

For large ω it holds that

Go(iω ) ) −
3

ω 4
+
i

ω 3

The Nyquist curve hence lies in the second quadrant and approaches
the origin along the positive imaginary axis as ω →∞.
For small ω it holds that

Go(iω ) ) −
3

4
−
i

2ω

The Nyquist curve approaches infinity in the third quadrant, in
parallel to the negative imaginary axis (Re Go(iω ) = −34) as ω → 0.
The intersection with the real axis is given by Im Go(iω ) = 0:

ω 2 − 2 = 0 / ω =
√
2
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which yields the intersection point

Go(i
√
2) = −

1

6

For the negative imaginary axis (s = −iω ) the following reasoning
holds.

Since Go(s) has real coefficients, Go(−iω ) is simply Go(iω )mirrored
in the real axis, i.e. Go(−iω ) = ReGo(iω ) − iImGo(iω ).
Now we consider the large half circle (s = Reiϕ ).
Because of

lim
R→∞

'Go(Reiϕ )' = 0

the large half circle is mapped onto the origin.

Finally we have the small half circle (s = reiϕ ).
As s traverses the small half circle, the argument ϕ varies according
to

ϕ =
π

2
→ 0→ −

π

2

For small 's' it holds that

Go(s) )
1

2s
=
1

2r
e−iϕ

The argument of Go(s) thus traverses the interval from −π
2 (through

0) to π
2 as the small half circle is traversed. Further, it holds that

'Go(s)' → ∞ as r → 0.
Figure 5.4 shows Go(s) as s traverses the curve C. The solid-, dashed-
and dash-dotted lines are the mappings of s = iω , s = −iω and the
small half circle, respectively. The large half circle is mapped onto
the origin.

An enlargement of the interesting region around −1 is shown in
figure 5.5. The intersection with the real axis is, as previously com-
puted, Go(iω ) = −1/6.
As is evident from the figures, the point −1 is not encircled by Go(s)
for K = 1, as s traverses the curve C in the direction of the arrow.
Cauchy’s argument principle gives

N − P = 0

Since P = 0 we have N = 0 and the closed loop system is hence
stable for K = 1. This holds for all K < 6, since N − P is constant
for K < 6.
For K > 6, the point −1 will, however, be encircled twice in the
positive direction by Go(s) and we obtain

N − P = 2 / N = 2

The closed loop system thus has two right half plane poles, which
renders it unstable. The criterion for stability is hence K < 6.
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Figure 5.4 Go(s) in assignment 5.6 as s traverses the contour C according to
figure 5.4.

Figure 5.5 Go(s) in assignment 5.6 as s traverses the contour C. Enlargement
of the region around −1.

Comment. Go(s) fulfills the requirements for the simplified Nyquist crite-
rion, since the poles of the open loop system lie in the LHP, except for one

pole in the origin. We can thus limit ourselves to study only the Nyquist

curve Go(iω ). We conclude that for K < 6, the point −1 lies to the left
of the Nyquist curve, when it is traversed in the direction of increasing

ω . The closed loop system is thus stable. For K > 6, this criterion is not
fulfilled and the closed loop system becomes unstable.

5.7 According to the Nyquist theorem, the closed loop system is stable
exactly for those K > 0, which are also
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a. K < 2

b. K < 1/1.5 = 2/3

c. K < 1/1.5 = 2/3

d. K < 1/(2/3) = 1.5

5.8 The Nyquist curve intersects the negative real axis when arg(GP(iω )) =
−π , i.e. when

−3arctan(ω ) = −π

This is fulfilled when

ω = tan
π

3
=
√
3

The intersection point is given by

'GP(i
√
3)' =

1

8

This means that the system is stable for K < 8.

5.9 The system is stable for

0 < K <
1

3.5
0 0 < K < 0.29

as well as

1 < K <
1

0.5
0 1 < K < 2

5.10 The easiest way to solve the problem is through the Nyquist theorem.
The transfer function of the process is

GP(s) =
e−9s

(1+ 20s)2

The phase shift of the process is

argGP(iω ) = −9ω − 2arctan(20ω )

We seek the frequency for which the phase shift is −180○. It is
obtained by solving the equation

−9ω − 2arctan(20ω ) = −π

The equation lacks an analytic solution. However, it can be solved
numerically in several ways. The solution is

ω 0 ) 0.1
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The next step is to determine the process gain for the given fre-
quency.

'G(iω 0)' =
1

1+ 400ω 20
= 0.2

This gives us the gain margin

Am =
1

0.2
= 5

The gain K = 5 is thus the maximal admissible gain.

5.11 The loop transfer function is

GP(s)GR(s) = e−sL ⋅
10(1+ 1

2s)
(1+ 10s)

= e−sL ⋅
5(1 + 2s)
s(1+ 10s)

The cross-over frequency is the frequency where the magnitude of
the loop transfer function is equal to one.

'G0(iω c)' =
5
√

1+ 4ω 2c
ω c

√

1+ 100ω 2c
= 1

The equation can be solved numerically or analytically

25(1 + 4ω 2c ) = ω 2c (1+ 100ω 2c )

ω 4c − 0.99ω 2c − 0.25 = 0
ω 2c ) 1.199
ω c ) 1.1 rad/min

The phase at this frequency is

argG0(iω c) = arctan 2ω c − arctan 10ω c − 90○ −ω cL

The requirement of the phase margin, ϕm ≥ 10○, gives

ϕm = 180○ + argG0(iω c)
= 180○ + arctan 2ω c − arctan 10ω c − 90○ −ω cL

) 70○ −ω cL ≥ 10○

This gives the following limit for the time delay L:

L ≤
60

ω c
⋅

π

180
= 1min

The time delay must therefore be less than one minute.

5.12a. True. Am = 1/'KGP(iω 0)', where ω 0 is the frequency for which the
Nyquist curve intersects the negative real axis.

b. True. ϕm = π + argGP(iω ) for 'GP(iω )' = 1.

c. False. As K is decreased, all points on the Nyquist curve move closer
to the origin. Thus the phase margin increases as K is decreased.

d. True. The system is stable for K = 1 and all poles of GP(s) lie in the
left half plane. Consequently, the simplified Nyquist criterion can
be applied. For K = 2, the point −1 lies to the right of the Nyquist
curve, when it is traversed as ω increases. The closed loop system
is thus stable.
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5.13a. This is the definition of the gain margin. From the plot one sees
that the phase −180○ corresponds to the gain ∼ 0.4. This yields the
gain margin 1/0.4 = 2.5.

b. This is the definition of the phase margin. From the plot one sees
that for gain 1, the phase is approximately −140○. This yields a
phase margin of approximately 180○ − 140○ = 40○.

5.14 The cross-over frequency and phase margin are read to be ω c = 0.07
and ϕm = 40○, respectively. The delay margin becomes

Lm =
ϕm
ω c
=
40○ ⋅ π

180○

0.07
= 10
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Solutions to Chapter 6. Controllability

and Observability

6.1 a. From the controllability matrix

Ws =


 B AB


 =






β 1− β

1 −2







we obtain detWs = −β − 1, i.e. controllability for all β &= −1.

b. The observability matrix

Wo =






C

CA





 =







0 γ

0 −2γ







has zero determinant independent of γ , i.e. the system is not ob-
servable for any value of γ .

6.2 The controllability matrix is given by

Ws =


 B AB A2B


 =











4 −8 16

−2 4 −8
1 −2 4











The controllable states are described by the vector (4,−2, 1)T .

6.3

Wo =






C

CA





 =







1 1

−1 −1







We see thatWo is singular (detWo = 0). The state x is non-observable
if and only if (iff)

Wox = 0
We obtain a non-observable x iff x1 + x2 = 0. The non-observable
states are thus given by

x = α







1

−1







where α is a number &= 0.

6.4 The controllability matrix

Ws =


 B AB


 =






1 −1
0 0







is singular, yielding an uncontrollable system. We can, however, con-
duct a more detailed investigation. The system can be written









dx1
dt
= −x1 + u, x1(0) = 1

dx2
dt
= −2x2, x2(0) = 1
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Hence x2(t) = x2(0)e−2t = e−2t, independent of the applied control
signal u. On the contrary, x1 can be controlled by means of u, to
take on any desired value. Thus, x2 → 0 as t → ∞. The states
(x1, x2) which can be reached in finite time t < ∞ make up the
band 0 < x2 < 1 in figure 6.1.

x

x

1

2

1

Figure 6.1 Reachable states in assignment 6.4.

As a consequence, only the states







3

0.5





 and







10

0.1





 can be reached

in finite time.

6.5 a. Controllable, since the controllablity matrix

Ws =


 B AB


 =






1 8 4 2

2 6 −7 −16







has full rank (i.e. 2 in this case). This can be seen from e.g. the two
first columns forming a non-singular 22 2 matrix.

b. For u2 = 0 we obtain

B =






1

2







The system is controllable, since

Ws =


 B AB


 =






1 4

2 −7







has full rank.

c. For u1 = −2u2 we obtain

Bu =






1 8

2 6













1

−0.5





u1 =







−3
−1





u1 = B ′u1

The system is not controllable, since

Ws =


 B ′ AB ′


 =






−3 3

−1 1







is not of full rank. (The column vectors are parallel.)
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6.6 a.

Ws =


 B AB A2B


 =











0 0 0

0 0 0

1 2 4











We see that Ws has rank 1, which is less than n = 3. The system
is thus not controllable. The controllable states are spanned by the
column vectors in Ws, i.e. x = (0, 0, 1)T .

b.

Wo =











C

CA

CA2










=











1 0 1

−1 1 2

−4 −1 4











Wo(s) has full rank, since detWo = 11. This means that the system
is observable, i.e. there are no unobservable states.

6.7 a.

Ws =


 B AB


 =






5 −10
0 0







Ws has rank 1, i.e. the system is not controllable. The states which
can be reached in finite time from the origin are determined by the
columns of Ws. The controllable states can be parametrized by t as
x = t ⋅ (1 0)T .

b. G(s) = C(sI − A)−1B + D = 5/(s+ 2).

c. The following is a minimal state space representation of G(s)
{

ẋ = −2x + 5u
y = x
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Solutions to Chapter 7. PID Control

7.1 a. The frequency function of the controller is given by

GR(iω ) = K
(

1+ i(ωTd −
1

ωTi
)
)

The gain and phase shift for a frequency ω are directly obtained
from the gain function A(ω ) and phase function φω of the controller,
respectively.

A(ω ) = 'GR(iω )' = K

√

1+ (ωTd −
1

ωTi
)2

φ(ω ) = argGR(iω ) = arctan(ωTd −
1

ωTi
)

b. We immediately realize that the gain function A(ω ) has a unique
minimum for Im A(iω ) = 0, which means that

ωmin =
1√
TiTd

At this frequency the gain and phase shift are given by

A(ωmin) = K
φ(ωmin) = 0

Note that the phase shift is negative for ω < ωmin (phase lag) and
positive for ω > ωmin (phase lead).

7.2 a. The dashed gain curve is identical to the nominal one, except that
it is raised by a factor 4. This is thus the case where K has been
multiplied by 4. Observe that the dashed phase curve is not visible in
the plot since it coincides with the solid phase curve. The dotted gain
curve differs from the nominal (solid) curve at low frequencies, for
which it is lower. This indicates that Ti has been increased, resulting
in decreased low frequency gain. Also note that the phase curve
has been raised for low frequencies. The last (dash-dotted) curve
apparently corresponds to the case where Td has been increased.
This is further indicated by the factor 4 raise of the gain curve for
high frequencies. Also for this case, one can notice a certain increase
in the phase, although for somewhat higher frequencies.

The dashed step response is faster and less damped than the nom-
inal (solid) one. This is a characteristic sign of an increased gain
K . The corresponding Bode plot confirmingly shows that the cut-
off frequency, ω c, has increased (faster), while the phase margin
has decreased (less damped. The dotted step response features a
slow mode both in the reference- and load disturbance responses.
Observe the relatively fast increase in the reference response to ap-
proximately 0.8, followed by a slow convergence to 1. This must be
due to decreased integral action. The integral time Ti has thus in-
creased in this case. The corresponding Bode plot shows that ω c is
virtually unchanged.

99



This is seen in the step response by the fact that the first part has
approximately the same speed as the nominal case, whereas the
following slow settling is due to the decreased low frequency gain.
The last (dash-dotted) step response obviously corresponds to an in-
crease of the derivative time Td. The reference response is subject to
an fast initial increase, followed by a somewhat slower settling. This
is seen in the Bode plot by the fact that the high frequency gain has
increased, while the low frequency gain has remained unchanged.
The load response is somewhat slower and more damped than in the
nominal case.

b. The dashed gain curve is lowered by a factor 2 in comparison to the
nominal one, corresponding to a decreased value of K . The dashed
phase curve consequently coincides with the nominal (solid) case.
The dotted gain curve has been increased for low frequencies, i.e. Ti
has decreased. The dash-dotted gain curve has been lowered at high
frequencies, i.e. Td has decreased.

The dashed step response is slower and more damped than the nom-
inal one. This indicates that K has decreased, since neither a de-
crease in Ti nor Td would yield a more damped step response. This
is further confirmed by the Bode plot. The only case where ω c has
decreased is when K has decreased. It is also the only case for which
the phase margin has increased. The two remaining step responses
are both less damped than the nominal one. In order to determine
which of these corresponds to a decrease of Ti, we look at the corre-
sponding Bode plot (the dotted one). This shows that the cutoff fre-
quency ω c has increased somewhat compared to the other nominal
case. The dash-dotted Bode plot, however, shows that the decrease
of Td has not changed ω c. The dotted step response is initially some-
what faster than the nominal (solid) one, whereas the dash-dotted
one is initially approximately as fast as the nominal one. This im-
plies that the dotted step response corresponds to a decrease in Ti,
while the dash-dotted one corresponds to a decrease in Td.

7.3 The transfer function of the process is given by

GP =
C

Js+ D

and the transfer function of the PI controller is given by

GR = K
(

1+
1

sTi

)

We can now write down the closed loop transfer function Gcl as

Gcl =
GRGP
1+ GRGP
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The characteristic polynomial is the denominator of Gcl

s2 +
D + CK
J

s+
CK

JTi

and the desired characteristic polynomial is

s2 + 2ζ ω s+ω 2

Identification of coefficients yields










K =
2ζ ω J − D

C

Ti =
2ζ ω J − D

ω 2J

7.4 The transfer function of the process, Gp, is given by

Θ = GPI =
ki

Js2 + Ds
I

and the transfer function of the PID controller, GR, is given by

I = GR(Θre f − Θ) = K
(

1+
1

sTi
+ sTd

)

(Θre f − Θ)

where Θre f is the Laplace transform of the reference value of θ . The
transfer function of the closed loop system, G, is thus given by

Θ = GΘre f =
GRGP
1+ GRGP

Θre f

The characteristic polynomial is given by the denominator of G and
is

s3 +
D + KkiTd

J
s2 +

Kki
J
s+
Kki
JTi

We hence arrive at the polynomial equation

(s+α )(s2 + 2ζ ω s+ω 2) = s3 + (α + 2ζ ω )s2 + (2αζ ω +ω 2)s+αω 2

Identification of coefficients yields the equations


















D + KkiTd
J

= α + 2ζ ω

Kki
J
= 2αζ ω +ω 2

Kki
JTi

= αω 2

from which one can calculate the sought controller parameters


















K =
J

ki
(2αζ ω +ω 2)

Ti =
2ζ

ω
+
1

α

Td =
α + 2ζ ω − D/J
2αζ ω +ω 2
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7.5 a. The transfer function of the controller is

Gr(s) = K (1 +
1

sTi
) = (1+

1

s
) =
s+ 1
s

The low frequency asymptote becomes

Gr(s) )
1

s

I.e. the gain curve is a straight line with slope = -1 and argGr(iω ) =
−90○. The slope of the gain curve increases to 0 at the corner fre-
quency ω 1 = 1.
The high frequency asymptote is Gr(s) ) 1 with 'Gr(iω )' = 1, i.e.
slope = 0 and argGr(iω ) = 0. The corresponding Bode plot is shown
in figure 7.1.

Figure 7.1 Bode plot of a PI controller with K = 1 and Ti = 1.

b. The transfer function of the controller is

Gr(s) = K (1+ Tds) = 1+ s

The low frequency asymptote becomes Gr(s) ) 1, i.e. the gain curve
is a straight line with magnitude 1 and slope = 0 and the phase
curve is described by argGr(iω ) = 0○. The slope of the gain curve
increased to +1 at the corner frequency ω 1 = 1.
The high frequency asymptote is given by Gr(s) ) s, i.e. the slope of
the gain curve is+1 and the phase curve is described by argGr(iω ) =
+90○. The corresponding Bode plot is shown in figure 7.2.
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Figure 7.2 Bode plot of a PD controller with K = 1 and Td = 1.

7.6 The transfer function of the process can be factored as

GP(s) =
e−9s

(1+ 20s)2
= G1(s) ⋅ G2(s)

where

G1(s) =
1

(1+ 20s)2

and
G2(s) = e−9s

First draw the Bode plot of G1(s). This system has LF gain 1 and
corner frequencyω 1 = 1/20 = 0.05 rad/s. the slope of the HF asymp-
tote is −2.
Then compute the Bode plot of GP(s) by superpositioning the phase
curve of G1(s) with the contribution from the delay G2(s), which
has gain = 1 and phase shift

ϕ = argG2(iω ) = −9ω

The result is shown in figure 7.3.

The bode plot in figure 7.3 tells that the phase shift of the process is
−180○ for ω = ω o = 0.1 rad/s. The corresponding gain is 'G(iω P)' =
0.2. The critical gain Kc thus becomes

Kc =
1

0.2
= 5

and the period is

To =
2π

ω o
= 63
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Figure 7.3 Bode plot of the cement oven in assignment 7.6.

The obtained controller parameters are thus

{

K = 0.45Kc = 2.25
Ti = To/1.2 = 53

7.7 Step response method: With the customary notion we obtain a = 0.3
and b = 0.8. The controller parameters become K = 1.2/a = 4,
Ti = 2b = 1.6 and Td = b/2 = 0.4.
Frequency method: The Nyquist curve intersects the negative real
axis in −1/3 for ω = 1 rad/s, which yields To = 2π /ω = 2π and
Kc = 3. The controller parameters become K = 0.6Kc = 1.8, Ti =
To/2 = 3.1 and Td = To/8 = 0.8.

7.8 a. The step response of the system is shown in figure 7.4.

From the figure we obtain (with the customary notion) a = b = 1.
This yields the controller parameters K = 1.2/a = 1.2, Ti = 2b = 2
and Td = b/2 = 0.5.
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Figure 7.4 Step response of G(s) = e−s/(s + 1).

b. The resonance frequency is determined by argG(iω ) = − arctanω −
ω = −π . Numerical solution yields ω ) 2.03, resulting in T =
2π /ω = 3.1.
Further, Kc = 1/'G(iω c)' = 2.26, which gives K = 1.4, Ti = 1.5 and
Td = 0.39.

7.9 The Bode plot of the system is shown in figure 7.5.

Figure 7.5 Bode plot of G(s) = 1/(s+ 1)3.

The phase curve passes −180○ when

argG(iω c) = −3arctan(ω c) = −π /

ω c = tan(
π

3
) =
√
3 = 1.732

At this frequency, the gain is

'G(iω c)' = (1+ω 2c )−3/2 = 1/8 = 0.125

This yields Kc = 8 and the period To = 2π /ω c = 3.6.
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The controller parameters become K = 0.6Kc = 4.8, Ti = To/2 = 1.8
and Td = To/8 = 0.45.

7.10a. The figure does not allow for any greater precision. Draw the tan-
gent of the step response where the derivative attains a maximum
and study the intersection of the tangent and the two coordinate
axis. The parameter a is given by the distance between 0 and the
intersection with the vertical axis, whereas b is given by the dis-
tance between 0 and the intersection with the horizontal axis. In
our example we have a = 0.65 and b = 4. From the table we obtain
the following controller parameters: K = 1.9, Ti = 8 and Td = 2.

b. The critical gain Kc is the gain which causes the Nyquist curve to
pass through -1. In our case we have Kc = 1/0.55 = 1.8. The critical
period T0 corresponds to the frequency at ’o’, i.e. T0 = 2π /ω = 14.6.
This yields the controller parameters: K = 1.1, Ti = 7.3 and Td =
1.8.

c. The value of K obtained from the last method is smaller than the
values obtained through Ziegler-Nichol’s methods.
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Solutions to Chapter 8. Lead-Lag

Compensation

8.1 a. In the frequency domain the bandwidth gives a measure of the sys-
tem’s speed. A high bandwidth, ω b, yields sinusoids with angular
frequencies lower than ω b and an amplification of at least 1/

√
2.

However, frequencies above ω b will be damped.

In the singularity chart, the distance of the dominant poles to the
origin, are the main measure of the system’s speed.

Answer: B,D.

b. In the frequency domain, the resonance peak mainly gives informa-
tion concerning the overshooting behavior of the system.

A way to motivate this is to draw a Bode plot of the closed loop
system.

G(s) =
ω 20

s2 + 2ω 0ζ s+ω 20
with varying ζ . Small ζ yield a high resonance peak, which de-
creases with increasing ζ .

In the singularity chart the angle ϕ is a measure of the system’s
overshooting behavior (the relative damping ζ = cosϕ).
Answer: C,F.

8.2 Generally it is required that 'G2(iω c)' > 1 in order forω c to increase.

A The speed of the system increases, but simultaneously its stability
is reduced since the phase margin decreases.

B 'G2' < 1 for allω , resulting in decreased cross-over frequency and
speed.

C Cf. B.

D 'G2' = 1 for all ω , leaving the cross-over frequency unaffected.

8.3 The process is connected in a feedback loop with a proportional con-
troller. By adding a compensation link one wants to decrease the
ramp error of the compensated system by a factor 10. Simultane-
ously, a small decrease in stability (phase margin) is accepted, re-
sulting in a certain decrease of the system’s transient behavior.

We can affect the ramp error by introducing a phase lag compensa-
tion link

Gk(s) = M
s+ a
sM + a

The resulting ramp error becomes

lim
t→∞
e(t) = lim

s→0
sE(s) = lim

s→0
s ⋅

1

1+ Gk(s)GP(s)
⋅
1

s2

= lim
s→0

(sM + a)(s+ 1)(s+ 2)
s(sM + a)(s+ 1)(s+ 2) + KM(s+ a)

=
2

KM
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By choosing M = 10 (K = 1) the ramp error is reduced to 0.2.
Now it remains to decide a value for a. The phase lag link con-
tributes to a phase lag in the open loop. The phase lag is largest
around the frequency ω = a/

√
M . In order not to compound the

transient behavior of the closed loop system excessively, a must be
chosen such that the phase around the cross-over frequency is left
unaffected. This can be achieved by choosing a adequately small.
However, a overly small value of a results in a long time before the
ramp error decreases to 0.2. Let ω c denote the cross-over frequency
of the uncompensated system. At this frequency, the compensation
link has a phase contribution

argGk(iω c) = arctan
ω c
a
− arctan

Mω c
a

A simple rule of thumb is to choose a = 0.1ω c. In our example it
means that the compensation link contributes with a phase shift of

argGk(iω c) = arctan 10− arctan 100 ) −5.1○

From the Bode plot of the uncompensated system (see figure 8.1) we
read the cross-over frequency ω c to be 0.4 rad/s. The compensation
link thus becomes

Gk(s) = 10
s+ 0.04
10s + 0.04

=
s+ 0.04
s+ 0.004

Figure 8.1 Bode plot of the uncompensated open loop system (solid line) and
compensated open loop system (dash-dotted line) in assignment 8.3. K = 1 for
both cases.

In Figure 8.1 Bode plots for both the uncompensated open loop sys-
tem KGP(s) and the compensated open loop system KGk(s)GP(s)
are shown.
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The compensation link alters the transient behavior of the system.
Figure 8.2 shows how the overshoot of the step response has in-
creased, compared to the uncompensated system. Also the settling
time has increased, partly due to the slow mode in the compensation
link.

0 10 20 30 40 50
0

0.5

1

1.5

Figure 8.2 Step responses of the uncompensated closed loop system (solid line)
and the compensated closed loop system (dashed line) in assignment 8.3.

The purpose of introducing the compensation link was to decrease
the ramp error. Figure 8.3 shows the error e = r − y for both the
uncompensated and compensated systems, with r = t.
As seen from the figure, the compensated system fulfills the crite-
rion of a ramp error less than 0.2.

0 20 40 60 80 100
0

1

2

3

Figure 8.3 Ramp error of the uncompensated system (solid line) as well as the
compensated system (dashed line) in assignment 8.3.
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8.4 Use a phase lag compensation link

Gk(s) = KN
s+ b
s+ bN

The cross-over frequency ω c of the uncompensated system can be
read from the Bode plot in figure 8.4. One can also determine ω c

Figure 8.4 Bode plot of the uncompensated open loop system (solid line) as well
as the compensated open loop system (dash-dotted line) in assignment 8.4.

from the equation

'GP(iω c)' =
1.1

ω c
√

ω 2c + 1
= 1

This yields ω c = 0.84. The new cross-over frequency is chosen to
be ω ∗

c = 1.68. The phase shift of the uncompensated system at the
frequency ω c is

argGP(iω c) = −90o − arctan(0.84) = −130o

In order not to decrease the phase margin, it must hold that

arg(Gk(iω ∗
c)GP(iω ∗

c)) ≥ argGP(iω c)

We have

argGP(iω ∗
c) = −90o − arctan(1.68) = −149o

For the compensation link it must hence hold that

argGk(iω ∗
c) ≥ 19o
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From the collection of formulae we find that N = 2 is adequate.
The compensation link has its maximal phase shift at the frequency
b
√
N . This shall occur at the new cross-over frequency, i.e.

ω ∗
c = b

√
N / b =

ω ∗
c√
N
= 1.2

Now choose K such that ω ∗
c becomes the actual cross-over frequency

(observe that 'Gk(iω ∗
c)' = K

√
N)

'Gk(iω ∗
c)GP(iω ∗

c)' = 1 / K = 2.1

We thus obtain the compensation link

Gk(s) = 4.2
s+ 1.2
s+ 2.4

Figure 8.4 shows the Bode plot of the uncompensated open loop sys-
tem GP(s) as well as the compensated open loop system Gk(s)GP(s).
Figure 8.5 shows the step responses of the uncompensated and com-
pensated systems.

0 5 10 15 20
0

0.5

1

1.5

Figure 8.5 Step response of the uncompensated closed loop system (solid line)
as well as the compensated closed loop system (dashed line) in assignment 8.4.

8.5 We choose a phase lead link

Gk(s) = KK ⋅ N
s+ b
s+ bN

The specification implies that the low frequency gain shall not de-
crease (which would increase the stationary error). The cross-over
frequency shall increase by a factor 3 and the phase margin shall
remain unchanged.

The open loop transfer function is

G0(s) = Gk(s)G1(s) = KK ⋅ N
s+ b
s+ bN

⋅
1

s(s+ 1)(s+ 2)
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The Bode plot of G1 is presented in figure 8.6. From this, or from
numerical calculations, the cross-over frequency is determined to
ω c = 0.45 rad/s and the phase margin is ϕm = 53○. The new cross-

Figure 8.6 Bode plot of the uncompensated system G1 (solid line) and compen-
sated system GkG1 (dash-dotted line) in assignment 8.5.

over frequency shall thus beω ∗
c = 3⋅ω c = 1.35 rad/s with unchanged

phase margin. Since argG1(iω ∗
c) ) −180○, the phase curve must be

raised approximately 50○ by Gk.

From the collection of formulae it is obtained that N = 8 gives a
maximal phase lead of approximately 50○. The phase lead is maxi-
mal at the frequency b

√
N = ω ∗

c , yielding b = 0.48. The gain shall
be unity at the new cross-over frequency ω ∗

c , i.e.

'Gk(iω ∗
c)' ⋅ 'G1(iω ∗

c)' = 1

The magnitude of the compensator is 'Gk(iω ∗
c)' = KK

√
N . Numeri-

cal calculations give 'G1(iω ∗
c)' = 0.18. Hence

KK =
1√

N ⋅ 0.18
= 2.0

The step response of the uncompensated and compensated systems,
respectively, are shown in figure 8.7 and the ramp response is shown
in figure 8.8. Since KK > 1 the stationary error become smaller than
before, thus fulfilling the specifications.

8.6 From the Bode plot of Go(s) (see figure 8.9) we obtain φm = 20○
and ω c = 0.7 rad/s. Unchanged speed necessitates a compensation
link which does not affect the cross-over frequency. We hence need a
phase lead of ∆φm = 30○ at ω = ω c = 0.7 rad/s. We utilize a phase
lead compensation link

Gk(s) = KN
s+ b
s+ bN
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Figure 8.7 The step response of the uncompensated closed loop system (solid
line) as well as the compensated closed loop system (dashed line) in assignment 8.5.

0 2 4 6 8 10
0

2

4

6

8

10

Figure 8.8 The ramp response of the uncompensated system (solid line) as well
as the compensated system (dashed line) in assignment 8.5.

1. The sample curves in the collection of formulae yield N = 3.
2. b
√
N = ω c / b = 0.7√

3
= 0.40

3. 'Gk(iω c)Go(iω c)' = K
√
N ⋅ 1 gives K =

1√
N
= 0.58

The compensation link thus becomes

Gk(s) = 0.58 ⋅ 3
s+ 0.4
s+ 1.2

Finally, we calculate the resulting stationary error

E(s) =
1

1+ GkGo
R(s)

=
s(s+ 0.5)(s+ 3)(s+ bN)

s(s+ 0.5)(s+ 3)(s+ bN) + 2KN(s+ b)
R(s)
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Figure 8.9 Bode plot of Go(s) in assignment 8.6.

With R(s) = 1/s2 the stationary ramp error becomes

lim
s→0
sE(s) =

1.5

2K
= 1.29

which fulfills the specification. Figure 8.10 shows the step response
of the system before and after the compensation. The ramp error is
shown in figure 8.11. The fact that the ramp error is increased by
the compensation is due to K < 1.

0 10 20 30
0

0.5

1

1.5

2  y(t)

Figure 8.10 Step response of the uncompensated closed loop system (solid line)
and compensated system (dashed line) in assignment 8.6.

8.7 We know that a phase lag compensation link dimensioned according
to the rules of thumb will decrease the phase margin by approxi-
mately 6○, which yields a certain decrease of stability. In order not

114



0 10 20 30
0

0.5

1

1.5
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Figure 8.11 Ramp error of the uncompensated closed loop system (solid line) as
well as the compensated closed loop system (dashed line) in assignment 8.6.

to obtain an excessive overshoot, we start by decreasing the gain of
the process in order to increase the phase margin.

From the Bode plot of the process (see figure 8.12) we find that G−1

Figure 8.12 Bode plot of the uncompensated open loop system (solid line) as well
as the compensated open loop system (dash-dotted line) in assignment 8.7.

has a phase shift of −133○ at the cross-over frequency ω c = 0.7. At
the frequency ω ∗

c = 0.6 we have the phase shift −133○ + 6○ = −127○
and the gain 'G1(ω ∗

c)' = 1.2.
By decreasing the open loop gain by a factor 1.2 we obtain the new
cross-over frequency ω ∗

c and a phase margin increase of 6
○. Since

we cannot affect the process gain directly, we equivalently let K =
1/1.2 = 0.83 in the compensation link.
The main problem is to decrease the stationary ramp error to e1 ≤
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0.1. The final value theorem gives

e(∞) = lim
s→0
sU(s)

1

1+ Gk(s)G1(s)

= lim
s→0
s
1

s2
(s+ a/M)s(s2 + 2s+ 2)

(s+ a/M)s(s2 + 2s+ 2) + 1.5K (s+ a)

=
2

1.5KM
≤ 0.1

which yields M ≥ 16. Choose M = 16. According to the rule of
thumb we let a = 0.1ω ∗

c = 0.06. The chosen compensation link thus
becomes

Gk(s) = 0.83
s+ 0.06
s+ 0.00375

Figure 8.13 shows the step response before and after the compensa-
tion. The ramp errors of the uncompensated closed loop system and
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Figure 8.13 Step response of the uncompensated closed loop system (solid line)
as well as the compensated closed loop system (dashed line) in assignment 8.7.

the compensated closed loop system are shown in figure 8.14.
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Figure 8.14 Ramp error of the uncompensated closed loop system (solid line) as
well as the compensated closed loop system (dashed line) in assignment 8.7.
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Comment. Since we have decreased the open loop gain we obtain a de-

creased cross-over frequency and hence a somewhat slower system. In fig-

ure 8.13 one especially notes the slow mode which appears as the process

settles. It is caused by the slow pole of the controller in combination with

the low gain. The rise time and damping are, however, virtually unaffected.

An alternative to decreasing the open loop gain, in order to maintain the

desired phase margin, would be to introduce a phase lead compensation

link.
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Solutions to Chapter 9. State Feedback

and Kalman Filtering

9.1 a. True. Since the system is controllable, one can place the poles of the
closed loop system arbitrarily by means of linear feedback from all
state variables.

b. False. A linear state feedback does not affect the zeros of the closed
loop system.

c. True if the system is observable.

d. True if the system is observable.

9.2 The closed loop system becomes

{

ẋ = (A− BL)x + Blrr
y= Cx

The characteristic equation is thus

det(sI − A+ BL) = s2 + (3+ l1 + 2l2)s+ 2(1+ l1 + l2) = 0

We need (s+ 4)2 = s2 + 8s + 16 = 0. Identification of coefficients
yields l1 = 9, l2 = −2. The closed loop transfer function is G(s) =
C(sI − A+ BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+ BL)−1Blr =
lr
4
= 1

yielding lr = 4.

9.3 a. The characteristic polynomial of the closed loop system is given by

det(sI − (A− BL)) =
∣
∣
∣
∣

s+ 0.5+ 3l1 3l2

−1 s

∣
∣
∣
∣
= s2 + (0.5+ 3l1)s+ 3l2

The desired characteristic polynomial is

(s+ 4+ 4i)(s+ 4− 4i) = s2 + 8s+ 32

Identification of coefficients yields

L =


 5/2 32/3


 =


 2.5 10.7




The closed loop system transfer function is Gyr(s) = C(sI − A +
BL)−1Blr. The stationary gain is unity if

Gyr(0) = C(−A+ BL)−1Blr =
3

32
lr = 1

which yields lr = 32/3.
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b. According to a rule of thumb, the observer poles shall be chosen 1.5–
2 times faster than the state feedback. Place the poles of the Kalman
filter in e.g. −8, leading to the following characteristic polynomial

(s+ 8)(s + 8) = s2 + 16s+ 64

The characteristic polynomial of the Kalman filter is given by

det(sI−(A−KC)) =
∣
∣
∣
∣

s+ 0.5 k1

−1 s+ k2

∣
∣
∣
∣
= s2+(0.5+ k2)s+0.5k2+ k1

Identification of coefficients yields

K =






225/4
31/2





 =







56.25

15.5







9.4 Introduce the state vector x =


 θ̇ θ ż



T
. The state space de-

scription of the craft dynamics is

ẋ =











θ̈

θ̇

z̈










=











K1u

θ̇

K2θ










=











0 0 0

1 0 0

0 K2 0










x +











K1

0

0










u = Ax + Bu

The control law is given by

u = uref − l1θ̇ − l2 z̈− l3 ż = uref − l1θ̇ − l2K2θ − l3 ż = uref − Lx

with L = (l1, l2K2, l3). The closed loop system becomes

ẋ = Ax + B(uref − Lx) = (A− BL)x + Buref

The poles of the closed loop system are given by the eigenvalues of
A− BL, i.e. the roots of the closed loop characteristic equation

det(sI − (A− BL)) =

∣
∣
∣
∣
∣
∣

s+ K1l1 K1K2l2 K1l3

−1 s 0

0 −K2 s

∣
∣
∣
∣
∣
∣

= s3 + K1l1s2 + K1K2l2s+ K1K2l3 = 0

The placement of all poles in −0.5 implies the following character-
istic equation

(s+ 0.5)3 = s3 + 1.5s2 + 0.75s+ 0.125 = 0

One immediately obtains the solution




















l1 =
1.5

K1

l2 =
0.75

K1K2

l3 =
0.125

K1K2
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9.5 The augmented system becomes

d

dt











x1

x2

x3










=







A 0

−C 0

















x1

x2

x3










+







B

0





u+







0

1





 r

=











0 1 0

0 0 0

−1 0 0











︸ ︷︷ ︸

Ae











x1

x2

x3











︸ ︷︷ ︸

xe

+











0

1

0











︸ ︷︷ ︸

Be

u+











0

0

1











︸ ︷︷ ︸

Br

r

We seek Le =


 l1 l2 l3



 such that

det(sI − (Ae − BeLe)) = (s+α )(s2 + 2ζ ω s+ω 2)

Insertion of Ae, Be and Le into the above expression yields

s3 + l2s2 + l1s− l3 3 s3 + (α + 2ζ ω )s2 + (ω 2 + 2ζ ωα )s+αω 2

Identifications of coefficients now yields

l1 = ω 2 + 2ζ ωα

l2 = α + 2ζ ω

l3 = −αω 2

9.6 The estimation error x̃ fulfills ˙̃x = (A−KC)x̃. where K =


 k1 k2




T
.

The characteristic equation of the estimation error becomes

det(sI − (A− KC)) = s2 + (4+ k2)s+ k1 + 2k2 + 3 = 0

The desired characteristic equation is

(s+ 4)2 = s2 + 8s+ 16 = 0

Identification of coefficients yields k1 = 5, k2 = 4.

9.7 a. The characteristic equation of the closed loop system is given by

det
(

sI−(A−BL)
)

=
∣
∣
∣
∣

s+ 4+ l1 3+ l2
−1 s

∣
∣
∣
∣
= s2+(4+ l1)s+3+ l2 = 0

The desired characteristic equation is

(s+ 4)2 = s2 + 8s+ 16 = 0

Which yields l1 = 4 and l2 = 13. The control law becomes

u = −l1x1 − l2x2 = −4x1 − 13x2
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b. The states shall be estimated by means of a Kalman filter, i.e.

dx̂

dt
= Ax̂ + Bu+ K (y− Cx̂)

For x̃ we have
dx̃

dt
= (A− KC)x̃

Determine K such that all eigenvalues of the matrix A − KC are
placed in λ = −6.

det(λ I − A+ KC) = λ2 + (4+ k1 + 3k2)λ + 3+ 3k1 + 9k2
= (λ + 6)2 = λ2 + 12λ + 36

Identify the coefficients and solve for k1 and k2:

{

4+ k1 + 3k2 = 12
3+ 3k1 + 9k2 = 36

/

{

k1 + 3k2 = 8
k1 + 3k2 = 11

The system of equations lacks solution, see the comment below.

c. The states are to be estimated by a Kalman filter, for which the
eigenvalues of A− KC shall be chosen such that

λ2 + (4+ k1 + 3k2)λ + 3+ 3k1 + 9k2 = (λ + 3)2 = λ2 + 6λ + 9

Identifying coefficients and solving for k1 and k2 yields

{

4+ k1 + 3k2 = 6
3+ 3k1 + 9k2 = 9

/

{

k1 + 3k2 = 2
k1 + 3k2 = 2

This leaves only one equation, which implies that there exists in-
finitely many solutions, e.g. k1 = 2, k2 = 0 or k1 = 0, k2 = 2

3 etc.

The drawback of the proposed observer pole placement is that it
yields an estimation slower than the closed loop system. This does
not affect the response to reference changes, which is governed by
the poles of the closed loop system. However, the handling of process
disturbances becomes slower.
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Comment. An inspection of the system’s observability shows that

detWo =

∣
∣
∣
∣
∣

C

CA

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1 3

−1 −3

∣
∣
∣
∣
∣
= 0

I.e. the system is not observable. The transfer function of the system is
given by

G(s) = C(sI − A)−1B =
s+ 3

s2 + 4s+ 3
=

1

s+ 1
The eigenvalue −3 corresponds to a non-observable mode. The mode is,
however, controllable, which follows from the canonical controllable form
realization of the system. The characteristic equation of A − KC can be
written

det(λ I − A+ KC) = (λ + 3)(λ + k1 + 3k2 + 1)

This means that the Kalman filter has to estimate the non-observable

mode with its own speed. I.e. (at least) one of the eigenvalues of A− KC
must be placed in −3. This explains the failure to compute a Kalman filter
when the eigenvalues were to be placed in −6 and a success when they
were to be placed in −3. Note that in cases such as this one, the result is
either that there does not exist a solution K to the Kalman filter problem,

or that it exists infinitely many solutions. When the system is observable,

there exists a unique solution K .

9.8 a.

det(sI − (A− BL)) = det






s −1
l1 s+ l2





 = s2 + l2s+ l1

3 s2 + 2ζ ω s+ω 2

I.e. l1 = ω 2, l2 = 2ζ ω . The transfer function from r to y is given by

Y =
1

s2 + l2s+ l1
lrR

This transfer function has static gain 1 if

lr = l1 = ω 2

b.

det(sI − (A− KC)) = det






s+ k1 −1
k2 s





 = s2 + k1s+ k2

3 s2 + 2as+ a2

which yields k1 = 2a, k2 = a2.

c. We have

˙̂x = Ax̂ + Bu+ K (y− Cx̂) = (A− BL − KC)x̂ + Ky+ Blrr
u = −Lx̂ + lrr

i.e. a system with inputs r and y and output u.
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d.

ẋ = Ax + Bu = Ax − BLx̂ + Blrr
= Ax − BL(x − x̃) + Blrr = (A− BL)x + BLx̃ + Blrr
˙̃x = ẋ − ˙̂x = Ax + Bu− Ax̂ − Bu− K (y− Cx̂) = (A− KC)x̃

Thus

d

dt







x

x̃





 =







A− BL BL

0 A− KC













x

x̃





+







Blr

0





 r

The characteristic equation is given by

det

(

sI −






A− BL BL

0 A− KC







)

= det(sI − (A− BL))det(sI − (A− KC))

=
(

s2 + 2ζ ω s+ω 2
) (

s2 + 2as+ a2
)

= 0

e. The transfer function from r to y is given by



C 0




(

sI −






A− BL BL

0 A− KC







)−1




Blr

0





 =

= C(sI − (A− BL))−1Blr

i.e. the same transfer functions when the states are measured di-
rectly rather tan estimated by means of a Kalman filter.

9.9 a. L =


 0 2
√
2



, K =


 6− 5/2



T

b.

˙̂x =






−6 −2
9/2 −2

√
2





 x̂ +







6

−5/2





 y

u = −


0 2
√
2



 x̂

c. According to the solution of sub-assignment 9.8c, the following equa-
tion is obtained

(s2 + 2
√
2+ 4)(s2 + 6s+ 9) = 0

d.

GKF =
√
2

5s− 24
s2 + (6+ 2

√
2)s+ 12

√
2+ 9
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9.10

Wo =











C

CA

CA2










=











1 0 0

0 1 0

0 0 1











the observability matrix is non-singular (has full rank), i.e. the sys-
tem is observable.

det (sI − (A− KC)) = s3+k1s2+k2s+k3 = (s+α )
(

s2 + 2ζ ω s+ω 2
)

Identification of coefficients yields k1 = α + 2ζ ω , k1 = ω 2 + 2αζ ω
and k3 = αω 2. The equations of the Kalman filter (the observer)
become

˙̂x =











0 1 0

0 0 1

0 0 0





















x̂1

x̂2

x̂3










+











k1

k2

k3










(y− x̂1) +











0

1

0










u

Note that x̂3, our estimation of the zero error, is a pure integration
of y− x̂1.
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Solutions to Chapter 10. Controller

Structures

10.1 The disturbance d does obviously lack influence if

G1(s)H(s) + 1 = 0 0 H(s) = −
1

G1(s)

To be a practically useful control law it is required that the distur-
bance can be measured, that the model G1(s) of the heating system
is a "good" description of reality and that the inverse transfer func-
tion 1/G1(s) is practically realizable. This means that H(s)must not
contain derivatives of the signal d. The realization of H(s) can also
be problematic if G1(s) lacks a stable inverse (i.e. if G1(s) has right
half plane zeros, which is equivalent to being a non-minimum phase
system). Further, we cannot invert processes with low pass charac-
teristics more than at low frequencies and delays can obviously not
be inverted.

10.2 A block diagram for the system is shown in figure 10.1. Mass balance

Σ ΣK ΣG G

G

V T

F

−1

−1

h

v

h
ref x

feedforward

P controller valve tank

Figure 10.1 Block diagram of the level controlling system in assignment 10.2.

for the tank yields

A
dh

dt
= x(t) − v(t)

Laplace transformation gives (A = 1 m2)

H(s) =
1

s
(X (s) − V (s))

The transfer function of the tank is thus

GT (s) =
1

s

a. The closed loop transfer function becomes

G(s) =
GTGV K

1+ GTGV K
=

K

0.5s2 + s+ K
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The characteristic polynomial is hence

s2 + 2s+ 2K

The desired characteristic polynomial is

(s+ω )2 = s2 + 2ω s+ω 2

Identification of coefficients yields







ω = 1

K =
1

2

The transfer function form v(t) to h(t) is given by

H(s) = −
GT

1+ GTGV K
V (s) = −

1+ 0.5s
s(1+ 0.5s) + K

V (s)

If v(t) is a step of amplitude 0.1 we obtain V (s) = 0.1/s. The final
value theorem gives

h(∞) = lim
s→0
sH(s) = −

0.1

K

given that the limit exists and that the final value theorem is ap-
plicable.

b. A PI controller has the transfer function

GR(s) = K (1+
1

sTi
)

The closed loop transfer function becomes

G(s) =
GTGVGR
1+ GTGVGR

=
K (1+ sTi)

s(1+ 0.5s)sTi + K (1 + sTi)

The characteristic polynomial becomes

s3 + 2s2 + 2Ks+
2K

Ti

The desired characteristic polynomial is

(s+ω )3 = s3 + 3ω s2 + 3ω 2s+ω 3

Identification of coefficients yields



















ω =
2

3

K =
2

3

Ti =
9

2
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c. The relation between the flow disturbance v and the level h is given
by

H(s) =
GT (GVGF − 1)
1+ GTGVGR

V (s)

To eliminate the influence of v, we choose

GF(s) =
1

GV
= 1+ 0.5s

10.3 The closed loop system has the transfer function

(GR + K f )GP
1+ GPGR

=
(K + K f )s+ K/Ti
s2 + (3+ K )s+ K/Ti

a. The characteristic equation of the closed loop system is

s2 + (3+ K )s+ K/Ti = 0

The desired characteristic equation is

(s+ 2− 2i)(s+ 2+ 2i) = s2 + 4s+ 8 = 0

Identification of coefficients yields K = 1 and Ti = 1/8.

b. The feedforward K f affects the zeros of the closed loop system, but
leaves the poles unaffected. The poles can be placed by means of the
controller H in order to obtain adequate supression of disturbances,
cf. sub-assignment a above.

One can subsequently translate the zeros by means of K f in order
to e.g. reach a desired overshoot in the reference step responses.

The zero of the closed loop system is eliminated by choosing K f =
−K . With the pole placement in sub-assignment a, which corre-
sponds to a relative damping ζ = 1/

√
2 ) 0.7, the overshoot of the

closed loop system becomes approximately 5%.

10.4 The block diagram in assignment 10.3 can be re-drawn according to
figure 10.2. By comparing to the block diagram in assignment 10.3
we see that Hf f = H+K f and Hfb = H . Observe that manipulation
of K f offers the possibility to neutralize the derivation in H , i.e.
achieve a controller which derivates the output, but not the reference
value.

10.5 The system has three inputs: the reference yr and the two distur-
bances v1 and v2. The transfer functions between these three signals
and the output y are given by

Y =
G1G2GR1GR2

1+ G1GR1 + G1G2GR1GR2
Yr +

G1G2
1+ G1GR1 + G1G2GR1GR2

V1

+
(1+ G1GR1)G2

1+ G1GR1 + G1G2GR1GR2
V2
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+ + H  G(s)  

–1 H  

Y  r  

K  f  

Figure 10.2 Modified block diagram in assignment 10.3.

Let us call the three transfer functions Gyr, Gv1 and Gv2, respec-
tively. Ideally we would have Gyr = 1 and Gv1 = Gv2 = 0 for all
frequencies. This is, however, not achievable. Nonetheless, we can
assure that it holds in stationarity, i.e. for s = 0. For a P controller
we have GR(0) = K , where K is the gain of the controller. For a PI
controller it holds that GR(0) = ∞.
The transfer function Gyr becomes unity if GR2 is a PI controller.
The transfer function Gv1 becomes 0 if any of the controllers are
PI. The transfer function Gv2, however, is only zero if GR2 is a PI
controller.

Consequently GR2 must contain an integral part in order to guaran-
tee 0 stationary control error. The controller GR1 can then be chosen
to be a P controller. (If we furthermore want the internal signal y1
to coincide with its reference, also this controller would need an
integral part.)

10.6a. The closed loop transfer function is given by

Ginner(s) =
K1G1(s)
1+ K1G1(s)

=
2K1

s+ 2+ 2K1

In order to make the system 5 times as fast, the pole of the closed
loop system must be placed in s = −10, calling for K1 = 4.

b. The approximation Ginner(s) ) Ginner(0) = 0.8 yields

Gouter(s) =
GR2(s)G2(s)Ginner(0)
1+ GR2(s)G2(s)Ginner(0)

=
(K2s+ K2

Ti
)0.8

s2 + 0.8K2s+ 0.8 K2Ti

The specification of a system 10 times slower than the inner loop
calls for a pole in s = −1. Since we deal with a second order system,
we choose to locate both poles in s = −1 (somewhat slower than the
single pole case). This yields K2 = 2.5 and Ti = 2.
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Comment. A general rule when cascading controllers is to make the inner
loop 5–10 times faster than the outer loop in order to enable separation of
the controller calculations for the two loops. The actual closed loop system
(without approximations) becomes

Gouter(s) =
10(2s+ 1)

s3 + 10s2 + 20s+ 10

and has poles in approximately −7.516, −1.702 and −0.7815 where the
slower pole (s = −0.7815) will be the one essentially determining the
speed of the system. This corresponds fairly well to the specified speed.

10.7a. Since the steam flow is assumed to be constant, we can let F = 0,
which yields the following description of the dome

Y(s) =
10−3

s
M(s)

Since the controller is of P type we have M(s) = K (Yr − Y), where
Yr denotes the reference dome level. This yields

Y(s) =
K

K + 103s
Yr(s)

Since the system is linear and subject to negative feedback, a step
disturbance in the level gives rise to the same transient behavior
as a step disturbance in the reference. Hence let Yr(s) = 1

s . Inverse
transformation of Y(s) yields

y(t) = 1− e−K10
−3t

The specification on the settling time of the system now yields

y(10) = 1− e−K10
−2
= 0.9 / K = 230

b. The dome and P controller are described by

Y(s) =
K

K + 1000s
Yr(s) +

s− 0.01
(s+ 0.1)(1000s + K )

F(s)

Let Yr(s) = 0. A step disturbance in the steam flow F(s) = 1
s thus

gives

Y(s) =
s− 0.01

(s+ 0.1)(1000s + K )
1

s

The final value theorem yields

lim
t→∞
y(t) = lim

s→0
sY(s) = lim

s→0
s

s− 0.01
(s+ 0.1)(1000s + K )

1

s
=
−0.1
K

and stationary error becomes

e = yr − y = −y=
0.1

K
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c. Determine a feedforward link H(s) from steam flow F(s) to feed
water flow M(s) for the initial system, such that the level Y(s)
becomes independent of changes in the steam flow.

The system with feedforward H(s)F(s) is described by

Y(s) =
10−3

s
(M(s) + H(s)F(s)) +

s− 0.01
s(s+ 0.1)

10−3F(s)

=
10−3

s
M(s) +

10−3

s

(
s− 0.01
s+ 0.01

+ H(s)
)

F(s)

We want the influence from F(s) to be zero. Therefore choose H(s)
so that the expression in front of F(s) becomes zero. This criterion
is fulfilled when

H(s) = −
s− 0.01
s+ 0.1

which gives the desired feedforward.

10.8 The transfer function d→ y is

(1+ H(s)G1(s))G2(s) =
(

1+ H(s)
1

s+ 1

)
1

s

It is apparently 3 0 if we choose H(s) = H1(s) = −1/G1(s) =
−(s + 1). Unfortunately, H1(s) is not realizable since it contains
derivations.

Try instead

H(s) = H2(s) = −
(s+ 1)
(sT + 1)

where T is "small". Now H2(s) approximates H1(s) ’well’ for ’low’
frequencies. From the problem formulation it is evident that ’well’
shall be interpreted as ’with an error of at most 10%’ and ’low fre-
quencies’ means 'ω ' ≤ 5. With H(s) = H2(s), the transfer function
from d to y becomes

G(s) = −
T

1+ sT
Now choose T such that 'G(iω )' ≤ 0.1 for 'ω ' ≤ 5.
Since 'G(iω )' is declining for ω > 0 it is sufficient that 'G(0)' =
T ≤ 0.1, i.e. that T ≤ 0.1.

10.9 The delay margin is given by

Lm =
ϕm
ω c

First we compute the cross-over frequency ω c as

'G0(iω c)' = 'GP(iω c)GR(iω c)' =
∣
∣
∣
∣

2

iω c(iω c + 1)

∣
∣
∣
∣
=

2

ω c
√

ω 2c + 1
3 1

0 ω 4c +ω 2c − 4 = 0 0 ω c =

√

−1+
√
17

2
= 1.25
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Then we calculate the the phase margin ϕm

ϕm = π + argG0(iω c) = π −
π

2
− arctanω c = 0.675

We thus obtain Lm = ϕm/ω c = 0.54.

10.10a. The one second delay e−s is considered part of the process.

Controller GR(s) = K

Process GP(s) =
1

s(s+ 1)
e−s

Model ĜP(s) = GP(s) =
1

s(s+ 1)
e−s

Model without delay Ĝ0P(s) =
1

s(s+ 1)

b. According to the block diagram the control signal is given by

U(s) = GR(s)
(

E(s) + ĜP(s)U(s) − Ĝ0P(s)U(s)
)

The transfer function of the controller becomes

U(s) =
GR(s)

1− GR(s)ĜP(s) + GR(s)Ĝ0P(s)
E(s)

=
2

1−
2

s(s+ 1)
e−s +

2

s(s+ 1)

E(s) =
2s(s+ 1)

s(s+ 1) + 2− 2e−s
E(s)

The Bode plot of the controller is shown in figure 10.3. One notes
that the Smith predictor gives a large phase lead at the cross-over
frequency of the initial system.

c.

U(s) =
2s(s+ 1)

s(s+ 1) + 2− 2e−s
E(s) )

2s(s+ 1)
s(s+ 1) + 2− 2(1− s)

E(s)

=
2(s+ 1)
s+ 3

E(s)

This is a phase lead link with N = 3.

10.11 The gain curve of the system is given by

'G(iω )' =
k

ω

It is sufficient to read the value of the gain curve at a single fre-
quency in order to determine k. The gain is e.g. 1 at approximately
ω = 4.5. This yields

1 =
k

4.5
0 k = 4.5
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Figure 10.3 Bode plot of the Smith predictor.

The phase curve of the system is given by

argG(iω ) = −π /2−ω L

Now, it is sufficient to read the value of the phase curve at a single
frequency in order to determine L. The phase is e.g. −π at approx-
imately ω = 120. This yields

−π = −π /2− 120L 0 L = 0.013
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Solutions to Chapter 11. Design Examples

11.1a. The phase curve for v = 3 knots cuts −180○ at ω o ) 0.03 rad/s. At
this frequency we have 'G(i0.03)' ) 2. The gain K must hence be
smaller than 0.5 in order to yield a stable closed loop system.

b. In order to acquire the cross-over frequency ω c and phase margin
ϕm it is required that

{

'Gr(iω c)G(iω c)' = 1
argGr(iω c)G(iω c) = ϕm − 180○

where Gr(s) = K (1+ TDs). This leads to the equations






K 'G(iω c)'
√

1+ T2Dω 2c = 1

argG(iω c) + arctan TDω c = ϕm − 180○

With ω c = 0.03 rad/s, ϕm = 60○, 'G(iω c)' ) 2 and argG(iω c) )
−180○ we obtain













Td =
tan 60○

0.03
=
√
3

0.03
) 57.7

K =
1

'G(iω c)'
√

1+ T2dω 2c

)
1

2 ⋅ 2
= 0.25

c. If the speed suddenly increases from 3 to 7 knots, we have to turn
to the dotted Bode-curves in figure ??. The most drastic change is
that the gain curve has been raised by a factor 20. Additionally, the
phase curve has decreased for frequencies above 0.03 rad/s. This re-
sults in heavily reduced phase- and gain margins. A more thorough
examination shows that this in fact leads to instability of the closed
loop system. This can be seen in the Bode plot in figure 11.1, which
shows both the nominal case v = 3 knots and the case v = 7 knots.
One way to avoid this problem is to instead choose v = 7 knots

as the nominal case for the calculation of the PD controller. This,
however, means that one has to accept a slower settling time for the
slowest speed v = 3 knots. A better way is to let K and Td depend
on the speed v. This method is known as gain scheduling.

d. The transfer function from β to h can be approximated by

Ghβ (s) =
kvv

s3

From the Bode plot one sees that 'Ghβ (i ⋅0.1)' ) 0.04 for v = 3 knots
= 3 ⋅ 1.852/3.6 ) 0.5144 ⋅ 3 m/s, which yields

kv )
0.13 ⋅ 0.04

3 ⋅ 0.5144
) 2.6 ⋅ 10−5
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Figure 11.1 Bode plot of the PD compensated open loop system in assign-
ment 11.1. The solid curves show the case v = 7 knots. Note that the latter case
yields an unstable closed loop system.

e. The characteristic equation of the closed-loop is given by

s3 + Kkvv = 0

Since not all coefficients are positive, the closed-loop system is not
asymptotically stable for any value of K . In sub-assignment a it
was concluded through the measured frequency response that the
closed loop system was stable for K < 0.5. The explanation to this
apparent contradiction is found in the Bode plot which was used in
sub-assignment a: The approximation only holds for high frequen-
cies (ω > 0.05). For low gains, such as K < 0.5, the cross-over
frequency ω c < 0.03 lies outside the valid range of the model.
For e.g. ω < 0.03 the Bode plot shows a phase above −180○ while
the simplified model features the phase −270○ for all frequencies.

f. If x = (α̇ , α , h)T and u = β we obtain the state space equations

ẋ =











0 0 0

1 0 0

0 v 0










x +











kv

0

0










u

With the state feedback u = −Lx+ur the characteristic polynomial
of the closed loop system becomes

p(s) = det(sI − A+ BL) = s3 + kvl1s2 + kvl2s+ kvvl3

the desired characteristic polynomial is

p(s) = (s+γ ω 0)(s2+2ζ ω 0s+ω 20) = s
3+(γ +2ζ )ω 0s2+(2γ ζ+1)ω 20s+γ ω 30
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Direct comparison gives























l1 =
(γ + 2ζ )ω 0

kv

l2 =
(2γ ζ + 1)ω 20

kv

l3 =
γ ω 30
kvv

g. Here stationarity means constant height, h = href. This in turns
mean that all derivatives of h must be zero, i.e. α = 0 and α̇ = 0.
When the height has reached its correct value the control signal u =
β must also be zero since the submarine would otherwise continue
to rise. Thus Lr is obtained from the equation

0 = Lrhref − l1 ⋅ 0− l2 ⋅ 0− l3href

For v = 3 knots, we end up with the following result

Lr = l3 =
γ ω 30
kvv
)

γ ω 30⋅

2.6 ⋅ 10−5 ⋅ 3 ⋅ 0.5144
)

γ ω 30⋅

4.0 ⋅ 10−5

h. At a momentary disturbance ∆h = 0.1 m the rudder angle becomes

∆β = l3 ⋅ ∆h =
γ ω 30
vkv

⋅ 0.1 )
0.2ω 30

3 ⋅ 0.5144 ⋅ 2.6 ⋅ 10−5

Since ∆β ≤ 5○, we must have

ω 0 ≤
(
5 ⋅ 3 ⋅ 0.5144 ⋅ 2.6 ⋅ 10−5

0.2

) 1
3

) 0.1
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11.2a. The oscillation frequency ω o ) 27 rad/s and critical gain Kc ) 3.6
can be read from the Bode plot. The oscillation period is hence To =
2π /ω o ) 0.23. This yields the PID parameters K = 0.6Kc ) 2.2,
Ti = To/2 ) 0.12 and Td = To/8 ) 0.03. The step response of the
closed loop system is shown in figure 11.2. The specifications are
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Figure 11.2 The step response with PID control according to Ziegler-Nichols.

apparently not fulfilled. A PID controller (with filter factor) can
be considered a second order controller with integral action. As a
matter of fact, the specifications can be met, using a more general
second order controller with integral action (see figure 11.3). If one
tries to interpret it as a PID controller, one would end up with a
negative derivative time Td.
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Figure 11.3 The step response of the closed loop system with a second order
integrating controller.

b. In stationarity all derivatives of the states must be zero ẋ = 0. It
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hence holds that

{

0 = Axo + Buo = (A− BL)xo + BLryr
yr = yo = Cxo

This yields

Lr = −
1

C(A− BL)−1B

c. With x augmented to xe = (x1, x2, x3, xi)T we obtain

ẋe =



















−d1+dfJ1

df
J1

− kfJ1 0

df
J2

−df+d2J2

kf
J2

0

1 −1 0 0

0 kω2 0 0



















xe +

















kmki
J1

0

0

0

















u+
















0

0

0

−1
















yr

y =


 0 kω2 0 0


 xe

where the reference yr has been introduces as an extra input.

d. The approximate value of ωm becomes

ωm ) −
ln 0.02

0.5 ⋅ 0.38
) 20

e. When it comes to load disturbances, the fast Kalman filter (ω o = 40)
has the best performance. It is also best when it comes to suppress-
ing the influence of of measurement noise. However, it is the worst
choice when it comes to suppressing the influence of noise in the
control signal. The two cases ω o = 10 and ω o = 20 feature approx-
imately the same noise sensitivity, while ω o = 10 is slower when
it comes to eliminating load disturbances. A satiable choice is thus
ω o = 20.
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