1 a. The transfer function from u to y is given by $G(s) = C(sI - A)^{-1}B$.

$$G(s) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} s+1 & -1 \\ 0 & s+2 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{(s+1)(s+2)} = \frac{1}{s^2 + 3s + 2}$$

Scoring: 0.5 p for stating the correct algebraic expression and 0.5 p for the final answer.

b. The poles of the system are the eigenvalues of the system matrix A, which are also the zeros of the transfer function denominator polynomial. Solving (s + 1)(s + 2) = 0 shows that the system has one pole in -1 and one pole in -2.

The system is asymptotically stable since the real parts of all its poles are strictly negative.

Scoring: 0.5 p for realizing how to compute the poles, 0.5p for the poles and 0.5 p for the correct conclusion about stability.

2. Breaking the loop at *B* gives

$$B = Q(P(B + A) + A) = QPB + Q(P + 1)A$$

$$\Leftrightarrow B(1 - QP) = Q(P + 1)A$$

$$\Leftrightarrow B = \frac{Q(P + 1)}{1 - QP}A$$

The transfer function from A to B is hence

$$\frac{Q(P+1)}{1-QP}$$

Scoring: 1 p for an approach involving breaking the loop and writing down an algebraic equation, 1 p for the solution.

3. The cross-over frequency ω_c is the frequency at which the process gain is unity. This happens at $\omega_c \approx 0.07$ rad/s. (Values 0.06 rad/s $\leq \omega_c \leq 0.08$ rad/s qualify as correct answer.)

The -180° phase shift frequency ω_0 is the frequency at which the phase shift is -180° . This happens for an ω_0 in the range 0.4 rad/s $\leq \omega_0 \leq$ 0.5 rad/s. (Any values within this range qualifies as correct answer).

The amplitude margin A_m is the factor by which the gain at ω_0 needs to be multiplied to reach unity. In the particular Bode plot it is $A_m \approx 1/0.07 \approx 14$. (Any value in the range $1/0.08 \leq A_m \leq 1/0.04$ qualifies as correct answer). The phase margin φ_m is the phase difference between the phase at ω_c and -180° . In the particular Bode plot it is $\varphi_m \approx 35^\circ$. (Any value in the range $30^\circ \leq \varphi_m \leq 45^\circ$ qualifies as correct answer.)

Scoring: 0.5 p per correct definition and corresponding numerical value.

4. By applying the Laplace transform to both sides of the differential equations we obtain the following transfer functions

$$G_1(s) = \frac{1}{s^2 + 0.2s + 1}$$

$$G_2(s) = \frac{1}{s + 0.5}$$

$$G_3(s) = \frac{1}{s^2 + 0.8s + 1}$$

$$G_4(s) = \frac{2}{4s + 1}$$

 $G_1 - G_4$ have all their poles strictly in the left half plane. (For a second order system this is equivalent to all characteristic polynomial coefficients being strictly positive.) Hence $G_1 - G_4$ are asymptotically stable systems. We can therefore eliminate step response D from the candidates.

Step response A is eliminated since none of $G_1 - G_4$ exhibit a time delay.

This leaves B, C, E, and F. Systems G_2 and G_4 have real poles which means their step responses do not oscillate. Candidate step responses for these systems are therefore B and F. We see that the system corresponding to B must be the faster of the two. G_2 has a pole in 0.5, and G_3 has a pole in 0.25. We conclude

$$\begin{array}{l} G_2 \leftrightarrow B \\ G_4 \leftrightarrow F \end{array}$$

This leaves C and E as candidates for G_1 and G_3 , both with the structure

$$G(s) = \frac{\omega^2}{s^2 + 2\zeta \, \omega s + \omega^2}$$

Both G_1 and G_3 have $\omega = 1$ while G_1 has $\zeta = 0.1$ and G_3 has $\zeta = 0.4$. Therefore G_3 is the better damped of the two and must correspond to the step response with less oscillation, i.e. *E*. In summary

$$egin{array}{c} G_1 \leftrightarrow C \ G_2 \leftrightarrow B \ G_3 \leftrightarrow E \ G_4 \leftrightarrow F \end{array}$$

Scoring: Realizing to use transfer function representation gives 0.5 p and writing down the transfer functions gives an additional 0.5 p. Correct reasoning about stability, delay, system order and damping gives 0.5 p each.

5. Inserting the control law into the state update equation results in $\dot{x} = Ax + Bu = Ax - BLx + Bl_r r$. In the Laplace domain, this can be written $sIX = AX - BLX + Bl_r R$ or $(sI - (A - BL))X = Bl_r R$. Combined with the output equation the expression results in

$$Y = C(sI - (A - BL))^{-1}Bl_rR$$

The poles of the closed-loop transfer function from R to Y are the solutions of det(sI - (A - BL)) = det(sI - A + BL) = 0, i.e.

$$0 = \left| \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 \end{pmatrix} \right|$$
$$= \left| \begin{pmatrix} s + l_1 + 1 & l_2 \\ -1 & s + 1 \end{pmatrix} \right|$$
$$= s^2 + s(l_1 + 2) + (l_1 + l_2 + 1)$$

This should match the poles of the desired system, defined through

$$0 = (s+1)(s+2) = s^2 + 3s + 2$$

Matching coefficients of the two polynomials in s yields

$$\begin{cases} s^2: & 1 = 1 \\ s^1: & l_1 + 2 = 3 \Rightarrow l_1 = 1 \\ s^0: & l_1 + l_2 + 1 = 2 \Rightarrow l_2 = 0 \end{cases}$$

In stationarity the closed-loop dynamics are governed by

$$\dot{x} = 0 = (A - BL)x + Bl_r r \Leftrightarrow \begin{pmatrix} 0\\0 \end{pmatrix} = \begin{pmatrix} -2 & 0\\1 & -1 \end{pmatrix} \begin{pmatrix} x_1\\x_2 \end{pmatrix} + \begin{pmatrix} 1\\0 \end{pmatrix} l_r r$$
$$y = Cx \Leftrightarrow y = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2 \end{pmatrix}$$

The above expression is equivalent to the linear equation system

$$\begin{cases} 0 = -2x_1 + l_r r \\ 0 = x_1 - x_2 \\ y = x_2 \end{cases}$$

Together with the condition r = y, the above system has the unique solution $l_r = 2$. (The third equation gives $x_2 = r$. The second equation then yields $x_1 = x_2 = r$ which inserted into the first equation gives $-2r + l_r r = 0 \Rightarrow l_r = 2$. The sought state feedback control law is therefore

$$u = -x_1 + 2r$$

Comment: It is also possible to obtain l_r by solving $C(sI - (A - BL))^{-1}Bl_r = 1$ for s = 0.

Scoring: 1 p for the closed-loop characteristic equation, 1 p for the pole placement and 1 p for l_r . **6 a.** In stationarity $0 = m\dot{v} = \alpha d \sin \theta - \beta v^2$. Solving for v gives

$$v = \sqrt{\frac{\alpha d \sin \theta}{\beta}}$$

Since $\sin \theta$ takes on all values in [0, 1] when θ traverses [0, 90°], the possible stationary speeds are those in the closed interval

$$\left[0,\sqrt{\frac{\alpha d}{\beta}}\right]$$

Scoring: 0.5 p for realizing the use of $\dot{v} = 0$ in the differential equation, 0.5 p for the expression relating v and θ in stationarity and 0.5 p for the interval of possible stationary speeds.

b. The stationary control signal is found by solving

$$\begin{split} 0 &= m\dot{v} = \alpha d \sin \theta_0 - \beta v^2 \\ &= 10 \cdot 4 \sin \theta_0 - 0.2 \cdot 10^2 \\ &\Rightarrow \sin \theta_0 = \frac{1}{2} \end{split}$$

Since $0 \le \theta_0 \le 90^\circ$ the above equation has the unique solution

$$\theta_0 = 30^\circ = \frac{\pi}{6}$$
 rad

The stationary point of interest is therefore

$$(\theta_0, v_0) = (30^\circ, 10 \text{ m/s})$$

The nonlinear system is

$$\dot{v} = f(v, \theta) = \frac{\alpha d}{m} \sin \theta - \frac{\beta}{m} v^2$$

Differentiating the dynamics with respect to v and θ , respectively, and evaluating the results at the stationary point (θ_0, v_0) yields

$$A = \frac{\partial f}{\partial v}\Big|_{(v,\theta)=(v_0,\theta_0)} = -\frac{2\beta}{m}v_0 = -0.004$$
$$B = \frac{\partial f}{\partial \theta}\Big|_{(\theta,v)=(\theta_0),v_0} = \frac{\alpha d}{m}\cos\theta_0 = 0.02\sqrt{3} \approx 0.035$$

Introduction of the new variables $\Delta \theta = \theta - \theta_0$ and $\Delta v = v - v_0$ gives the linearized system

$$\Delta \dot{v} = -0.004 \Delta v + 0.02 \sqrt{3} \Delta \theta$$

with Laplace domain representation

$$\Delta v = \frac{0.02\sqrt{3}}{s+0.004} \Delta \theta = \frac{5\sqrt{3}}{250s+1} \Delta \theta$$

Scoring: 0.5 p for obtaining the stationary point corresponding, 0.5 p for computing the needed derivatives and an additional 0.5 p for evaluating them at the stationary point of interest. 0.5 p for introduction of new variables.

Figure 1 Control system block diagram with components and signals from Problem 6c.

c. See Figure 1.

Scoring: 1 p for a correct solution. 0.5 p if there are 1-2 errors and 0 p if there are more than 2 errors.

d. From the block diagram in the previous subproblem it is possible to directly write down (-YC + L)P = Y, assuming R = 0. Solving for Y gives the sought transfer function

$$G_{Y,L} = \frac{P}{1+CP}$$

Scoring: 0.5 p for breaking the loop and writing down the corresponding algebraic equation and 0.5 p for the transfer function.

e. The process has a transfer function with the structure

$$P(s) = \frac{b}{s+a}$$

and the controller is given by C(s) = K. Inserting these expressions in the transfer function from the previous subproblem gives

$$G_{Y,L} = \frac{\frac{b}{s+a}}{1+K = \frac{b}{s+a}} = \frac{b}{s+(a+bK)}$$

The time constant of this transfer function is $T = (a + bK)^{-1}$ [s]. For a given time constant, the desired controller gain is therefore

$$K = \frac{1 - aT}{bT}$$

From subproblem **b.** we have $a = 0.004 \text{ s}^{-1}$ and $b = 0.02\sqrt{3} \text{ m/s}^2$, which results in

$$K = rac{1 - 0.004 \cdot 50}{0.02 \sqrt{3} \cdot 50} = rac{0.8}{\sqrt{3}} pprox 0.46 \; \mathrm{s/m}$$

If subproblem **b.** was not solved, we instead have $a = 1/100 = 0.01 \text{ s}^{-1}$ and $b = 4/100 = 0.04 \text{ m/s}^2$, resulting in K = 0.25 s/m.

Scoring: 1 p for translating the problem into the correct pole placement equation and 1 p for the correct expression for K. No point deduction is made for incorrect P or $G_{Y,L}$ obtained in previous subproblems as long as they result in a problem of equivalent complexity (otherwise a dection of 0.5 p is made). 7 a. The Laplace transform of the step function is s^{-1} . Differentiation in the time domain is equivalent to multiplication by the Laplace variable s in the Laplace domain. The time derivative of the step response of G(s) therefore has the Laplace transform $G(s)s^{-1}s = G(s)$. The initial value theorem yields

$$\lim_{t \to 0} \frac{d}{dt} \mathcal{L}^{-1} \left(G(s) \frac{1}{s} \right) = \lim_{s \to \infty} s G(s)$$

Applying this result to G_1 and G_2 , respectively, yields

$$\lim_{s \to \infty} sG_1(s) = \lim_{s \to \infty} \frac{sb}{s+a} = \lim_{s \to \infty} \frac{s}{s+O(1)}b = \lim_{s \to \infty} \frac{s}{s}b = b$$
$$\lim_{s \to \infty} sG_2(s) = \lim_{s \to \infty} \frac{se}{(s+c)(s+d)} = \lim_{s \to \infty} \frac{se}{s^2+O(s)} = \lim_{s \to \infty} \frac{e}{s} = 0$$

Scoring: 1 p is given for presenting the correct Laplace domain limits and 1 p for correct evaluation of the two limits.

b. A system of order n requires at least n states for its state space representation, but it is always possible to introduce a state space representation with more than n states. Rewriting the system equations

$$\dot{x}_1 = -x_1 + u$$
$$\dot{x}_2 = x_1 - x_2 + 2u$$
$$y = x_1$$

reveals that the state x_2 does not influence x_1 and therefore has no influence on *y*. The input-output dynamics of the system are given by $\dot{y} = -y + u$ and the system is therefore de facto a first order system with transfer function

$$G(s) = \frac{1}{s+1}$$

It is also possible to arrive at the same conclusion by evaluating $G_{Y,U}(s) = C(sI - A)^{-1}B$, where A, B and C are the system matrices in the problem description

$$C(sI - A)^{-1}B = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$= \frac{s+1}{(s+1)(s+1)} = \frac{1}{s+1}$$

The system has a zero at s = -1, which cancels one of the two poles at s = -1.

Scoring: Analyzing the behavior of the system (either in time or Laplace domain) gives 1 p and the correct conclusion that it is a first order system gives an additional 1 p.

c. The observability matrix of the system is

$$W_o = \left(egin{array}{c} C \ CA \end{array}
ight) = \left(egin{array}{c} 1 & 0 \ -1 & 0 \end{array}
ight)$$

Non-observable states x fulfill $W_0 x = 0$, i.e.

$$\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

The above equality holds whenever $x_1 = 0$, in which case there is no guarantee that the state estimator converges to the correct state.

Comment: The answer "No, because the system is not observable" is also accepted.

Scoring: 0.5 p for computing the observability matrix and an additional 0.5 p for drawing a correct and motivated conclusion.