
1 a. The transfer function from u to y is given by G(s) = C(sI − A)−1B.

G(s) =


 1 0








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s+ 1 −1
0 s+ 2









−1







0

1








= 1

(s+ 1)(s+ 2) =
1

s2 + 3s+ 2

Scoring: 0.5 p for stating the correct algebraic expression and 0.5 p for the

final answer.

b. The poles of the system are the eigenvalues of the system matrix A, which

are also the zeros of the transfer function denominator polynomial. Solving

(s + 1)(s + 2) = 0 shows that the system has one pole in −1 and one pole
in −2.
The system is asymptotically stable since the real parts of all its poles are

strictly negative.

Scoring: 0.5 p for realizing how to compute the poles, 0.5p for the poles and

0.5 p for the correct conclusion about stability.

2. Breaking the loop at B gives

B = Q(P(B + A) + A) = QPB + Q(P + 1)A
\ B(1− QP) = Q(P + 1)A

\ B = Q(P + 1)
1− QP A

The transfer function from A to B is hence

Q(P + 1)
1− QP

Scoring: 1 p for an approach involving breaking the loop and writing down

an algebraic equation, 1 p for the solution.

3. The cross-over frequency ω c is the frequency at which the process gain
is unity. This happens at ω c ( 0.07 rad/s. (Values 0.06 rad/s ≤ ω c ≤
0.08 rad/s qualify as correct answer.)
The −180○ phase shift frequency ω 0 is the frequency at which the phase
shift is −180○. This happens for an ω 0 in the range 0.4 rad/s ≤ ω 0 ≤
0.5 rad/s. (Any values within this range qualifies as correct answer).
The amplitude margin Am is the factor by which the gain at ω 0 needs to be
multiplied to reach unity. In the particular Bode plot it is Am ( 1/0.07 ( 14.
(Any value in the range 1/0.08 ≤ Am ≤ 1/0.04 qualifies as correct answer).
The phase margin ϕm is the phase difference between the phase at ω c and
−180○. In the particular Bode plot it is ϕm ( 35○. (Any value in the range
30○ ≤ ϕm ≤ 45○ qualifies as correct answer.)
Scoring: 0.5 p per correct definition and corresponding numerical value.
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4. By applying the Laplace transform to both sides of the differential equations

we obtain the following transfer functions

G1(s) =
1

s2 + 0.2s+ 1 G2(s) =
1

s+ 0.5
G3(s) =

1

s2 + 0.8s+ 1 G4(s) =
2

4s+ 1

G1 – G4 have all their poles strictly in the left half plane. (For a second
order system this is equivalent to all characteristic polynomial coefficients

being strictly positive.) Hence G1 – G4 are asymptotically stable systems.
We can therefore eliminate step response D from the candidates.

Step response A is eliminated since none of G1 – G4 exhibit a time delay.

This leaves B, C, E, and F. Systems G2 and G4 have real poles which

means their step responses do not oscillate. Candidate step responses for

these systems are therefore B and F. We see that the system corresponding

to B must be the faster of the two. G2 has a pole in 0.5, and G3 has a pole

in 0.25. We conclude

G2 Q B
G4 Q F

This leaves C and E as candidates for G1 and G3, both with the structure

G(s) = ω 2

s2 + 2ζ ω s+ω 2

Both G1 and G3 have ω = 1 while G1 has ζ = 0.1 and G3 has ζ = 0.4.
Therefore G3 is the better damped of the two and must correspond to the

step response with less oscillation, i.e. E. In summary

G1 Q C
G2 Q B
G3 Q E
G4 Q F

Scoring: Realizing to use transfer function representation gives 0.5 p and

writing down the transfer functions gives an additional 0.5 p. Correct rea-

soning about stability, delay, system order and damping gives 0.5 p each.
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5. Inserting the control law into the state update equation results in ẋ =
Ax + Bu = Ax − BLx + Blrr. In the Laplace domain, this can be written
sIX = AX − BLX + BlrR or (sI − (A − BL))X = BlrR. Combined with
the output equation the expression results in

Y = C(sI − (A− BL))−1BlrR

The poles of the closed-loop transfer function from R to Y are the solutions

of det(sI − (A− BL)) = det(sI − A+ BL) = 0, i.e.

0 =
∣

∣

∣

∣









s 0

0 s








−









−1 0

1 −1








+









1

0











 l1 l2





∣

∣

∣

∣

=
∣

∣

∣

∣









s+ l1 + 1 l2

−1 s+ 1









∣

∣

∣

∣

= s2 + s(l1 + 2) + (l1 + l2 + 1)

This should match the poles of the desired system, defined through

0 = (s+ 1)(s+ 2) = s2 + 3s+ 2

Matching coefficients of the two polynomials in s yields











s2 : 1 = 1
s1 : l1 + 2 = 3[ l1 = 1
s0 : l1 + l2 + 1 = 2[ l2 = 0

In stationarity the closed-loop dynamics are governed by

ẋ = 0 = (A− BL)x + Blrr \








0

0








=









−2 0

1 −1

















x1

x2








+









1

0








lrr

y = Cx\ y =


 0 1













x1

x2









The above expression is equivalent to the linear equation system











0 = −2x1 + lrr
0 = x1 − x2
y = x2

Together with the condition r = y, the above system has the unique solution
lr = 2. (The third equation gives x2 = r. The second equation then yields
x1 = x2 = r which inserted into the first equation gives −2r + lrr = 0 [
lr = 2. The sought state feedback control law is therefore

u = −x1 + 2r

Comment: It is also possible to obtain lr by solving C(sI−(A−BL))−1Blr =
1 for s = 0.
Scoring: 1 p for the closed-loop characteristic equation, 1 p for the pole place-

ment and 1 p for lr.
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6 a. In stationarity 0 = mv̇ = α d sinθ − βv2. Solving for v gives

v =
√

α d sinθ

β

Since sinθ takes on all values in [0, 1] when θ traverses [0, 90○], the possible
stationary speeds are those in the closed interval

[

0,

√

α d

β

]

Scoring: 0.5 p for realizing the use of v̇ = 0 in the differential equation, 0.5 p
for the expression relating v and θ in stationarity and 0.5 p for the interval
of possible stationary speeds.

b. The stationary control signal is found by solving

0 = mv̇ = α d sinθ0 − βv2

= 10 ⋅ 4 sinθ0 − 0.2 ⋅ 102

[ sinθ0 =
1

2

Since 0 ≤ θ0 ≤ 90○ the above equation has the unique solution

θ0 = 30○ =
π

6
rad

The stationary point of interest is therefore

(θ0,v0) = (30○, 10 m/s)

The nonlinear system is

v̇ = f (v,θ ) = α d

m
sinθ − β

m
v2

Differentiating the dynamics with respect to v and θ , respectively, and eval-
uating the results at the stationary point (θ0,v0) yields

A = � f
�v

∣

∣

∣

∣

(v,θ)=(v0,θ0)
= −2β

m
v0 = −0.004

B = � f
�θ

∣

∣

∣

∣

(θ ,v)=(θ0),v0
= α d

m
cosθ0 = 0.02

√
3 ( 0.035

Introduction of the new variables ∆θ = θ − θ0 and ∆v = v − v0 gives the
linearized system

∆v̇ = −0.004∆v+ 0.02
√
3∆θ

with Laplace domain representation

∆v = 0.02
√
3

s+ 0.004∆θ = 5
√
3

250s+ 1∆θ

Scoring: 0.5 p for obtaining the stationary point corresponding, 0.5 p for com-

puting the needed derivatives and an additional 0.5 p for evaluating them

at the stationary point of interest. 0.5 p for introduction of new variables.
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Y
E U

−1

C P++

Figure 1 Control system block diagram with components and signals from Problem 6c.

c. See Figure 1.

Scoring: 1 p for a correct solution. 0.5 p if there are 1–2 errors and 0 p if

there are more than 2 errors.

d. From the block diagram in the previous subproblem it is possible to directly

write down (−YC + L)P = Y, assuming R = 0. Solving for Y gives the
sought transfer function

GY,L =
P

1+ CP

Scoring: 0.5 p for breaking the loop and writing down the corresponding

algebraic equation and 0.5 p for the transfer function.

e. The process has a transfer function with the structure

P(s) = b

s+ a
and the controller is given by C(s) = K . Inserting these expressions in the
transfer function from the previous subproblem gives

GY,L =
b
s+a

1+ K = b
s+a

= b

s+ (a+ bK )

The time constant of this transfer function is T = (a + bK )−1 [s]. For a
given time constant, the desired controller gain is therefore

K = 1− aT
bT

From subproblem b. we have a = 0.004 s−1 and b = 0.02
√
3 m/s2, which

results in

K = 1− 0.004 ⋅ 50

0.02
√
3 ⋅ 50

= 0.8√
3
( 0.46 s/m

If subproblem b. was not solved, we instead have a = 1/100 = 0.01 s−1 and
b = 4/100 = 0.04 m/s2, resulting in K = 0.25 s/m.
Scoring: 1 p for translating the problem into the correct pole placement equa-

tion and 1 p for the correct expression for K. No point deduction is made for

incorrect P or GY,L obtained in previous subproblems as long as they result

in a problem of equivalent complexity (otherwise a dection of 0.5 p is made).
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7 a. The Laplace transform of the step function is s−1. Differentiation in the
time domain is equivalent to multiplication by the Laplace variable s in

the Laplace domain. The time derivative of the step response of G(s) there-
fore has the Laplace transform G(s)s−1s = G(s). The initial value theorem
yields

lim
t→0

d

dt
L
−1

(

G(s)1
s

)

= lim
s→∞

sG(s)

Applying this result to G1 and G2, respectively, yields

lim
s→∞

sG1(s) = lim
s→∞

sb

s+ a = lims→∞
s

s+O (1)b = lims→∞
s

s
b = b

lim
s→∞

sG2(s) = lim
s→∞

se

(s+ c)(s+ d) = lims→∞
se

s2 +O (s) = lims→∞
e

s
= 0

Scoring: 1 p is given for presenting the correct Laplace domain limits and

1 p for correct evaluation of the two limits.

b. A system of order n requires at least n states for its state space represen-

tation, but it is always possible to introduce a state space representation

with more than n states. Rewriting the system equations

ẋ1 = −x1 + u
ẋ2 = x1 − x2 + 2u
y = x1

reveals that the state x2 does not influence x1 and therefore has no influence

on y. The input-output dynamics of the system are given by ẏ = −y+u and
the system is therefore de facto a first order system with transfer function

G(s) = 1

s+ 1

It is also possible to arrive at the same conclusion by evaluating GY,U(s) =
C(sI − A)−1B, where A, B and C are the system matrices in the problem
description

C(sI − A)−1B =


 1 0




(







s 0

0 s








−









−1 0

1 −1









)−1







1

2









= s+ 1
(s+ 1)(s + 1) =

1

s+ 1

The system has a zero at s = −1, which cancels one of the two poles at
s = −1.
Scoring: Analyzing the behavior of the system (either in time or Laplace

domain) gives 1 p and the correct conclusion that it is a first order system

gives an additional 1 p.
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c. The observability matrix of the system is

Wo =








C

CA








=









1 0

−1 0









Non-observable states x fulfill Wox = 0, i.e.








1 0

−1 0

















x1

x2








=









0

0









The above equality holds whenever x1 = 0, in which case there is no guar-
antee that the state estimator converges to the correct state.

Comment: The answer "No, because the system is not observable" is also

accepted.

Scoring: 0.5 p for computing the observability matrix and an additional 0.5 p

for drawing a correct and motivated conclusion.
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