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0. Repetition of Linear Algebra,

Differential equations and MATLAB

Solve the following exercises by hand. If you are unsure about how

to solve the exercises, please go back to your Linear algebra and

Analysis books and review the material needed.

0.1

a. Find the solution to the differential equation below when x(0) = 1,

dx

dt
= c

b. Find the solution to the differential equation below when x(0) = 1,

dx

dt
= cx

c. Find the solution to the differential equation below when x(0) = 1
and x ,= 0 for any t,

dx

dt
= 2tx2

d. Rewrite the differential equation into a system of first order differ-

ential equations. Discuss some possible structure in a physiological

system the model could describe.

ÿ+ 7ẏ− 3y = 0
y(0) = 0
ẏ(0) = 1

Solve the following exercises using MATLAB. These exercises are in-

spired by or fully extracted from EDA017: Föreläsningsanteckningar,

OCTAVE/MATLAB by Christian Söderberg.

0.2 In MATLAB, find the commands necessary to derive the following

results for matrices A and B

A =





2 0 0

0 3 4

0 4 9



 , B =





1

2

3
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Chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

a. calculate A ⋅ B and BT ⋅ A. What about B ⋅ A?

b. Give the eigenvalues and eigenvectors of A.

c. Give the transpose and the determinant of A.

d. Give the inverse of A and review how the inverse is derived by hand

for a 2-by-2 matrix.

0.3

a. Plot y(x) = e−x/2cos(2π x) when −6 ≤ x ≤ 3 by using the function
handle to create an anonymous function. Give your plot a title as well

as labels on the axes. Useful commands: fplot, xlabel, ylabel,

title.

b. Modify your code such that you only show values −4.5 ≤ x ≤ −1
and −10 ≤ y ≤ 10. Useful command: axis.

c. Integrate the function for −4.5 ≤ x ≤ −1.
Useful commands: integral, quad.

d. Find the solution to f (x) = 0 when f (x) = x3+2x−1. Comment on
the answer. Useful command: fsolve.

0.4 Write a function which for every matrix A gives you the sum of the

diagonal elements of that matrix. Useful commands: diag, sum and

size.

0.5 Solve the differential equation

ÿ+ 7ẏ− 3y = 0
y(0) = 0
ẏ(0) = 1

in the interval 0 ≤ t ≤ 5 by using MATLABs solver ode45.

Solve the following exercises using SIMULINK in MATLAB. These ex-

ercises are taken from Exercises in MATLAB/Simulink, Signals and

Systems by Thomas Munther.

0.6 Investigate the bacterial growth in a jam pot. Assume that the num-

ber of born bacteria is increasing proportional to the existing num-

ber of bacteria x and the number dying is proportional to the existing

number in square. This gives the following differential equation

dx

dt
= bx − px2

where b = 1 [1/hour] is the birth rate constant and
p = 0.5 [1/(bacteria⋅hour)] is the death rate constant.
Assume x(0) = 100 [bacteria]. Use SIMULINK to show what the
solution to the differential equation looks like.
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Chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

0.7 Some physiological systems are better described in discrete time

which gives rise to difference equations. Show the behavior of y in

the two following difference equations

a.

yt = −0.5 ⋅ yt−1 + xt

b.

yt = 0.5 ⋅ yt−1 + xt

where x is the input signal to the system, in shape of a step starting

in t = 0 with amplitude 1 and y−1 = 1. yt is the value of y in time
step t.

0.8 Get familiar with some of the blocks that will be used in the course;

From Workspace, To Workspace, Constant, Scope, Step and

Sine Wave. Look at how Step and Sine Wave can be altered and

how they look by the use of a Scope. Try to save the result to the

workspace by To Workspace and plot it. Save the plots as an .eps-

file. Create a document, write something nice about the plot, add

the plot with a figure text, save the document as a .pdf-file.
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1. Biochemical Reactions

1.1 Use the law of mass balance to derive the differential equations

govering the production of X and Y:

a.

X
k1−−TS−−
k−1
Y

b.

X + X
k1−−TS−−
k−1
Y

c.

3X + Y
k1−−TS−−
k−1
Z

1.2 Simulate and plot the concentrations for the substrate S, enzyme

E, substrate-enzyme complex C and the end product P for the basic

enzymatic reaction

S+ E
k1−−TS−−
k−1
C
k2−T P + E

using the following set of parameters; k1 = 0.1, k−1 = 0.01 and k2 =
0.02, and with the following initial conditions [S]0 = 0.15 [mmol/l],
[E]0 = 0.01 [mmol/l], [C]0 = 0 [mmol/l] and [P]0 = 0 [mmol/l]. What
happens if the initial concentration of the enzyme is doubled? What

happens if the initial concentration of the substrate is doubled? How

does these results correspond to the Michealis-Menten parameters?

1.3 The data in Table 1.1 describes the concentration and reaction rates

of a chemical process. Is it an enzymatic reaction following the

Michaelis-Menten relationship? Can you give some rough estimates

of Vmax and Km from this graph? Plot the inverse of the concentra-

tion versus the inverse of the reaction rate. This plot is commonly

reffered to as a Lineweaver-Burk plot. Can you give some rough

estimates of Vmax and Km from this graph as well?

1.4 Competetive Inhibition: Some enzymes may bind other substances

than the target substrate to the binding site, thereby inhibiting the

formation of the intended substrate-enzyme complex and the subse-

quent end-product. Such a situation is characterized by the following

reaction dynamics:

S+ E
k1−−TS−−
k−1
C1

k2−T P+ E

I + E
k3−−TS−−
k−3
C2
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Chapter 1. Biochemical Reactions

Table 1.1 Reaction Data for problem 3

Substrate Reaction

Concentration [mM] Velocity [mM/s]
0.1 0.04

0.2 0.08

0.5 0.17

1.0 0.24

2.0 0.32

3.5 0.39

5.0 0.42

Derive the following relationship for the reaction velocity of the prod-

uct reaction, considering steady-state conditions for the enzyme and

enzyme complexes and preservation of the total enzyme content:

V = Vmax[S]
[S] + Km(1+ [I]/K I)

where [I] is the concentration of the inhibitor, Km = (k−1 + k2)/k1
and K I = k−3/k3.

1.5 Alcohol metabolism: Clearance of the blood alcohol level (BAL) [A]
[mg/dl] from the liver is metabolized by more than 20 different en-
zymes. From experimental data the total clearance effect of these

enzymes has been lumped into a common Michaelis-Menten rela-

tionship with population average Vmax = −15[mg/(dl⋅ h)] and a
Km = 5 [mg/dl].

d[A]
dt

= Vmax[A]
Km + [A]

To calculate the BAL, the total distribution volume of the body for

alhocol has to be known. The following relationship between the total

water volume, representing this distribution volume VD [l], and the
weight mBW [kg], gender and age Y [years] of the person has been
suggested.

VD = 20+ 0.36mBW − 0.1Y, Men

VD = 14+ 0.25mBW , Women

Assuming that a 25 year old man of 80 kg consumes a drink contain-

ing 2 cl of alcohol (density 800 kg/m3) at a fasting state. Digestion
of alcohol is very rapid on an empty stomach, and you may assume

that the total alcohol content has reached the blood stream after 20

minutes whereafter metabolization is considered to start. Simulate

and plot the BAL level for the four hours following the drink.
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2. Model Building and Linearization

2.1 Given the compartment model below

y

x1 x2u
k k

assume that x1 and x2 represent quantities of a substance subject

to conservation. y is a measurement of x2.

a. Give the balance equations when k = 1. What are the states, the
input and the output of the system?

b. From the balance equations derive the state space representation

for the system.

c. Determine the transfer function of the system analytically and by

using functions from the control toolbox in MATLAB.

2.2 Give the state-space representation of the system

...
y + 3ÿ+ 2ẏ+ y = u

where u(t) and y(t) are the input and output, respectively. Choose
states x1 = y, x2 = ẏ and x3 = ÿ.

2.3 A process with output y(t) and input u(t) is described by the differ-
ential equation

ÿ+√y+ yẏ= u2

a. Introduce states x1 = y, x2 = ẏ and give the state space representa-
tion of the system.

b. Find all stationary points (x01, x02,u0) of the system.

c. Linearize the system around the stationary point corresponding to

u0 = 1.

2.4 Linearize the system

ẋ1 = x21x2 +
√
2 sinu ( = f1(x1, x2,u))

ẋ2 = x1x22 +
√
2 cosu ( = f2(x1, x2,u))

y = arctan x2
x1
+ 2u2 ( = �(x1, x2,u))

around the stationary point u0 = π /4.

2.5 Blood Doping: Everyday about 2.5 ⋅1011 (0.25 trillion) new red blood
cells (RBCs) are released from the bone marrow into the peripheral
circulation, and in steady-state the same number of depleted RCB:s
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Chapter 2. Model Building and Linearization

are cleared by the spleen. Assume that the average lifespan of a

RCB is 120 days, and the cleared amount between two days k and

k− 1 is a constant fraction f of the total cell population R(k− 1) at
day k− 1. The cell population R(k) is Rre f [trillion cells] at steady
state. Furthermore, the rate of production r(k) [trillion cells/day]
is controlled by the level of erythropoietin EPO u(k) [Units/ml] ac-
cording to the outlined dynamics below (changes in the EPO level
do not fully effect the production rate directly, but the production

rate r(k) is partly dependent on the production rate the previous
day r(k− 1)):

r(k) = 0.9 ⋅ r(k− 1) + u(k), r(0) = f ⋅ Rre f ,u(0) = 0.025 (2.1)

Set up the difference equations for the red blood cell population R(k)
and the production rate r(k). Assume that we are at steady state
with a total cell population Rre f of 120 ⋅ 0.25 trillion cells. Create
a Simulink model according to Fig. 2.1 and simulate the system

for 100 days. Assume that the level of EPO normally is constant

at 0.025 Units/ml, but that it is artificially elevated to the double
normal level by injections for 20 consecutive days between day 21

and 40.

Production Rate

Population
From

Workspace

epo

EPO

Discrete State−Space

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Figure 2.1 Simulink model for the red blood cell system

2.6 Infection; Bacteria-Leukocytes Predator-Prey System: Neuthrophiles

are specialised white blood cells (leukocytes), specialising in defend-
ing against bacterial infections. Let B(t) denote the number of bac-
teria in a wound and N(t) the number of neuthrophiles. The bacte-
rial growth factor is α [bacteria/hour] and the killing factor of the
neuthrophiles β [bacteria/hour] and assume that the entry rate of
new neuthrophiles is u(t) [neutrophiles/hour].

dB

dt
= α B(t) − β ⋅ B(t) ⋅ N(t) (2.2)

dN

dt
= −γ N(t) + u(t) (2.3)

Simulate the system in Simulink with α = 3, β = 1.1,γ = 1.5, and
with initial conditions B(0) = 100,N(0) = 0 and let u(t) be a step
with magnitude 10. What happens if α becomes large (> 8)?
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3. Control in Physiology 1

3.1 Determine the transfer functions and give differential equations,

describing the relation between input and output for the following

systems, respectively.

a.

ẋ =








−2 0

0 −3







 x +








5

2







u

y =


−1 1



 x + 2u

b.

ẋ =








−7 2

−15 4







 x +








3

8







u

y=


−2 1



 x

3.2 Determine the impulse and step responses of the systems in assign-

ment 3.1 both analytically and through MATLAB. The step response

is defined as the output of the system when the input is the step

function u(t) = 1 for t > 0 and u(t) = 0 for t < 0.

3.3 Derive the formula G(s) = C(sI − A)−1B + D for a general system

ẋ = Ax + Bu
y = Cx + Du

3.4 Consider the system

G(s) = 1

s2 + 4s+ 3

a. Calculate the poles and zeros of the system. Is the system stable?

b. Calculate the impulse response by hand and plot it in MATLAB.

3.5 Consider the linear time invariant system

dx

dt
=









0 −1
1 0







 x +








1

0







u

y=


 1 −1


 x

Is the system stable? Plot the step response of the system.

3.6 Determine the transfer function from U to Y for the systems below.

a.

U + G1 Y

G2

10



Chapter 3. Control in Physiology 1

b.

H1

U G1 + G2 Y

H2

c.

G3 +

U + G1 G2 Y

3.7 Assume that the system

G(s) = 0.01(1+ 10s)
(1+ s)(1+ 0.1s)

is subject to the input u(t) = sin 3t, −∞ < t < ∞

a. Determine the output y(t).

b. The Bode plot of the system is shown in figure 3.1. Determine the

output y(t) by using the Bode plot instead.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3
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−3
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−2

10
−1

F
ör

st
är

kn
in

g

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−90

−45

0

45

90

P
h
a
se

Frequency [rad/s]

Figure 3.1 The Bode plot in assignment 3.7.
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4. Control in Physiology 2

4.1 Assume that the amount of some substrate y inside a cell is de-

scribed by the differential equation

ẏ(t) + 0.01y(t) = 0.01u(t)

where u is the inflow of the substrate to the cell.

a. Let u be the input and y the output and determine the transfer

function GP(s) of the process.

b. This is to be controlled by negative feedback with a controller GR(s).
Draw the block diagram and write down the transfer function of the

closed loop system. Be sure to define the input u, output y, error e

and reference signal r in the block diagram of the closed loop system.

c. If GR(s) is a P controller what will the transfer function look like
then?

d. Choose K , given that GR(s) = K , such that the closed loop system
obtains the characteristic polynomial

s+ 0.1

4.2 A process is controlled by a P controller according to the figure below.

ΣΣ
r

n

u y
GR GP

−1

a. Measurements of the process output indicate a disturbance n. Cal-

culate the transfer functions from n to y (the sensitivity function).

b. Let GP(s) = 1/(s + 1) and GR(s) = K and assume that the dis-
turbance consists of a sinusoid n(t) = A sinω t. What will y become
when this disturbance is present?

c. Assume that K = 1 and A = 1 in the previous sub-assignment.
Calculate the amplitude of oscillation y for the cases ω = 0.1 and
10 rad/s, respectively.

4.3 The process given by GP(s) = 1/(s+ 1)3 is controlled through nege-
tive feedback by the controller given by GR(s) = 6.5.

a. Determine the sensitivity function S(s).
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Chapter 4. Control in Physiology 2

b. The gain plot of the sensitivity function is given below. How much

are constant load disturbances damped by the control circuit (in
closed loop, as compared to open loop)? At which angular frequency
does the control circuit exhibit the largest sensitivity towards dis-

turbances and by how much are disturbances amplified at most?

10
−1

10
0

10
1

10
−1

10
0

10
1

F
ör

st
är

kn
in

g

4.4 The open-loop transfer function of a system is given by:

Go(s) = GR(s)GP(s) =
K (s+ 10)(s+ 11)
s(s+ 1)(s+ 2)

For which values of K is the closed-loop system stable?

4.5 Flow control is important in many applications. In e.g. a hemodialy-

sis machine it is very important to keep a steady and constant flow

through the filters to achieve optimal filtration. Pump-to-flow dy-

namics is given by the pump characterstics together with the piping

and filter system topology. The following transfer function relation-

ship is assumed to hold between the flow and the control input:

GP(s) =
e−9s

(1+ 20s)2

If a proportional controller is used, how large may the gain constant

K become before the system becomes unstable?
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5. Pharmacokinetics and Tracers

5.1 The half-life of a penicillin solution that contains 300 units/ml is
8 days, in plasma. What will the concentration in plasma be in 7

days? Assume the drug is eliminated from plasma through a linear

process. Plot the concentration over time.

5.2 The half-life of another penicillin solution is 6 days. Assume it is

eliminated from plasma as a linear process. How long will it take

for the concentration to drop to 40 % of the initial concentration?

5.3 Assume a drug is metabolised from plasma through a linear process.

It has an initial potency of 90 mg/ml. After 25 days in a cold room,
the concentration is found to be 80 mg/ml. What is the half-life of
the drug during the storage conditions?

5.4 A new drug targeting hepatatis has been developed. The drug is

administred orally and is believed to exhibit linear pharmacokinetics

including gut absorption.

a. Draw a simplified compartment model of the route of a drug includ-

ing the absoption in the gut, the distribution in the liver and the

remaining body and the elimination of the drug from these compart-

ments. In the model, the body compartment represents a lumped

compartment for the extra- and intracellular fluid of the body ex-

cluding the liver and the gut.

b. Set up a state-space representation of the model with the drug con-

centration in the liver as output using the parameters found in Table

e.

c. Simulate a 500 mg dose, assuming it takes 5 minutes to dissolve

at a constant rate (100 mg/min), using lsim for a total duration of
168 hours.

d. Try adding more doses with a 24 hour interval, i.e., a new tablet ev-

ery 24:th hour. The liver concentration will oscillate quite a lot with

almost a 2-fold ratio between the highest and the lowest concentra-

tions. Could you suggest some alternative dosing scheme to keep the

concentration at a more even level at the same mean concentration

value?

e. How large should a constant intravenuous dose (here we assume
that iv injections enters the body compartment) be to achieve a
steady-state liver concentration of 112 m�/dl?
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Chapter 5. Pharmacokinetics and Tracers

Parameter Value Description

VG 0.1 Distribution volume Gut [l]
VB 42 Distribution volume Body [l]
VL 0.27 Distribution volume Liver [l]
kGB 0.1 Kinetic coefficient Gut-to-blood [min−1]
kBL 4⋅10−3 Kinetic coefficient blood-to-liver [min−1]
kLB 1⋅10−3 Kinetic coefficient liver-to-blood [min−1]
ke,G 0.02 Elimination constant, gut [min−1]
ke,B 3⋅10−6 Elimination constant, blood [min−1]
ke,L 8⋅10−6 Elimination constant, liver [min−1]
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6. Biomechanics

6.1 Determine a control law u = lrr − Lx for the system

a.
dx

dt
=









−0.5 0

1 0







 x +








3

0







u

y=


 0 1



 x

such that the poles of the closed loop system are placed in −4± 4i
and the stationary gain, from reference to output, is 1.

b.
dx

dt
=









−1 0

0 −2







 x +








1

2







u

y =


 1 1



 x

such that the poles of the closed loop system are placed in −4 and
the stationary gain is 1. How would you sketch the block diagram

of the closed loop system?

6.2

m

k

c

y(t)

f (t)

In the right figure, a mass m is attached

to a wall with a spring and a damper.

The spring has a spring constant k and

the damper has a damping constant c. It

is assumed that k > c2/4m. An external
force f is acting on the mass. We denote

the translation of the mass from its equilibrium position by y. Fur-

ther, we let f (t) be the input signal and y(t) be the output signal.
The force equation gives

mÿ = −ky− cẏ+ f
Introduce the states x1 = y and x2 = ẏ and write down the state
space representation of the system.

6.3 Determine the transfer function and poles of the oscillating mass in

the previous exercise. Explain how the poles move if one changes k

and c, respectively. Can the poles end up in the right half plane?

6.4 When walking, the body is kept in upright position by some regu-

latory system. This balancing of the body can be simplified to the

problem of controlling an inverted pendulum positioned on a cart, by

moving the cart. In Fig. 6.1, a schematic of this inverted pendulum

is given.

The control signal is the velocity of the cart v [m/s]. The position of
the cart z [m] and the angle of the pendulum ϕ are measured. The
problem is to decide upon a feedback controller wich stabilizes the

pendulum in its upright position as well as moves the cart towards

some wanted position. If the model for this inverted pendulum is

linearized it can be written as

16



Chapter 6. Biomechanics

ϕ 

l   

z     

Figure 6.1 Inverted pendulum in exercise 6.4.

dx1

dt
= ω 0x2 + au

dx2

dt
= ω 0x1

dx3

dt
= bu

where the state variables

x1 = kϕ
dϕ

dt

x2 = ω 0kϕϕ

x3 = kzz

are used. They are all in unit [V]. The scalars kϕ , kv and kz are

calibration constants. The scalars a, b and ω 0 are given by

a = ω 20kϕ

�kv
b = kz

kv
ω 20 =

�
{

where � is the gravitational acceleration and { the length of the
pendulum.

Assume that we can measure the given states. Determine a state

feedback regulator which gives a closed loop system with poles in

−α , and −ω
(

ζ ± i
√

1− ζ 2
)

.
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7. Glucose and Insulin Dynamics

7.1 Insulin Sensitivity: The minimal model is used to estimate the in-

sulin sensitivity SI = �2Ġ/�G�I from an Intraveneus Glucose Tol-
erance Test (IVGTT). The minimal model is:

dX (t)
dt

= −p2X (t) + p3(I(t) − Ib), X (0) = 0, I(0) = Ib
dG(t)
dt

= −(p1 + X (t))G(t) + p1Gb + UG(t)/VG , G(0) = Gb

• UG(t): Intravenous Glucose Injection.
• VG: Distribution volume for plasma glucose.

• X (t) represents ’remote insulin’.

According to the model developers, SI can be calculated as:

SI = −
p3

p2

assuming steady state conditions of insulin. Derive this expression

given this assumption. Do you see any problems with this assump-

tion considering the IVGTT experiment?

7.2 Minimal Model Simulation: Create a Simulink model of the minimal

model (diff. eqs. in previous exercise) and simulate it with 1-minute
interpolated (see e.g. interp1) plasma insulin data from Table 1,
acting as input, together with the glucose injection at time 0 min

of 30 grams of glucose into a distribution volume V� of 5.45 l, to
produce the glucose response data. You may assume that we start

in steady state conditions with I = Ib = 7.3 and G = Gb = 85. The
parameters are: p1 = 0.0308, p2 = 0.0209 and p3 = 1.06 ⋅ 10−5.

7.3 Digestion Modeling: Consider the digestion model in the Padova sim-

ulation model:

qsto(t) = qsto1(t) + qsto2(t)
q̇sto1(t) = −k�ri ⋅ qsto1(t) + C(t)
q̇sto2(t) = k�ri ⋅ qsto1(t) − kempt ⋅ qsto2(t)
q̇�ut(t) = −kabs ⋅ q�ut(t) + kempt ⋅ qsto2(t)

Ra(t) =
f ⋅ kabs ⋅ q�ut(t)

MBW

• C(t) is the amount of ingested carbohydrates.
• qsto1 is the solid stomach compartment, and qsto2 represents the
liquid phase.

• q�ut is the glucose mass in the intestine.

• k�ri the rate of grinding.
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Chapter 7. Glucose and Insulin Dynamics

Time [min] Plamsa Insulin
0 11

2 26

4 130

6 85

8 51

10 49

12 45

14 41

16 35

19 30

22 30

27 27

32 30

42 22

52 15

62 15

72 11

82 10

92 8

102 11

122 7

142 8

162 8

182 7

• kempt is the rate constant of gastric emptying.

• kabs is the rate constant of intestinal absorption.

• Ra(t) is the appearance rate of glucose in the blood.

The model parameters are different for different types of meals.

Which parameters would you expect to change between for exam-

ple cooked potatos and potato mash, and how would those values

change?

7.4 Subcutaneous Delay: Show that the interstitial glucose value is a

first-order low-pass filtered version of the plasma glucose value con-

sidering the kinetics according to Fig. 6.1, i.e., that the transfer

function is of the form G = K 1
1+sτ .
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Chapter 7. Glucose and Insulin Dynamics

k3

Gl

GISF

Gp
k1

k2

Uii

EGP

E
Renal Excetion

Uid
Insulin−dependent Utilization

Insulin−independent Utilization

Endogeneous Production

Rate of Appearance
Ra

k3

Figure 7.1 Interstitial and Plasma Glucose compartment kinetics.
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8. The Hodgkin-Huxley model

8.1 Given the ion concentration in the table below, calculate the equi-

librium potentials of Na+, K+ and Cl− at room temperature, 25○C,
by the Nernst equation.

Ion Inner conc. [µM] External conc. [µM]

Na+ 12 145

K+ 155 4

Cl− 4.2 123

How does the potentials change if the temperature is lowered 20

degrees?

8.2 Below is the Goldman Equation, giving the membrane potential V

at certain ion concentrations and permeabilities.

V = RT
F
ln

(

PK [K ]2 + PNa[Na]2 + PCl[Cl]1
PK [K ]1 + PNa[Na]1 + PCl[Cl]2

)

Pi - permeability for ion [i], 1 - inner concentration and 2 - external
(outer) concentration.

a. How would you describe permeability?

b. Assume some initial permeability for each ion. If the permeability

of sodium (Na) would rise, how would this change the membrane
potential? You can assume that the ion concentrations are the same

as in the previous exercise.

8.3 Write down the differential equation for the membrane potential of

the Hodgkin and Huxley model stated in lecture 8. Declare the dif-

ferent constants and functions. Can you give a physiological descrip-

tion to why this differential equation is non-linear? Hint: threshold

potential.

8.4 The dynamics of the gating variables m, n and h are:

dm

dt
= αm (V ) (1−m) − βm (V )m

dh

dt
= α h (V ) (1− h) − β h (V )h

dn

dt
= α n (V ) (1− n) − β n (V )n
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Chapter 8. The Hodgkin-Huxley model

where the rate functions are, unit [1/ms]:
αm (V ) = 0.1 (V + 45) / (1− exp (− (V + 45) /10))
βm (V ) = 4exp (− (V + 70) /18)
α h (V ) = 0.07exp (− (V + 70) /20)
β h (V ) = 1/ (1+ exp (− (V + 40) /10))
α n (V ) = 0.01 (V + 60) / (1− exp (− (V + 60) /10))
β n (V ) = 0.125exp (− (V + 70) /80)

a. What do the gating variables correspond to physiologically?

b. Plot αm (V ), βm (V ), α h (V ), β h (V ), α n (V ) and β n (V ) for values
of V between -90 and 70 [mV].

8.5 Look at the differential equation of the membrane potential, dis-

cussed in exercises 8.3, if only the leakage and external currents

are present. That is

Cm
dV

dt
= −�L (V − EL) + Iext

In this case you don’t have to mind about the m, n and h functions

due to IL being independent of them. Solve the differential equation

in MATLAB when the external current starts at 0 and increases by

5 [µA/cm2], as a step, every 100 ms for 500 ms. Assume that the
initial membrane potential is the equilibrium potential of leakage

EL = −59.387 [mV], that �L = 0.3 [mS/cm2] and the membrane
capacitance is Cm = 1[µF/cm2]. What happens?

8.6 R

L

Cvin

+

−

vout

+

−

iThe Hodgkin and Huxley model

is derived upon the idea of seeing

the membrane of the neuron as

an electrical circuit. As an exam-

ple of an electrical circuit see the

RLC circuit to the right, the input

and output voltages are given by

vin(t) and vout(t), respectively. By means of Kirchhoff’s voltage law
we see that

vin − Ri− vout − L
di

dt
= 0

For the capacitor, we additionally have

Cv̇out = i

Introduce the states x1 = vout and x2 = v̇out and give the state space
representation of the system.

In the Hodgkin and Huxley model the inductor L is not used. How

does the electrical circuit of the Hodgkin and Huxley model look

like?

8.7 Determine the transfer function of the RLC circuit in the previous

assignment.
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9. Further Topics in Physiological

Control

9.1 On page 183 in the text book a model of the ventilation system

based on an electrical analogy may be found. Here, the model is

derived from a mechanical viewpoint. The respiratory tract (nasal
cavity, pharynx, trachea, bronchi) and the lungs (the total collection
of alveolars) can be thought of as a tube connected to a (single)
flexible membrane of volume V . Considering the gas flow to be both

incompressible and isotermic, we know from fluid mechanics that

the (laminar) flow rate V̇ in a tube is proportional to the pressure
difference between the pipe ends:

RV̇ = (pext − plun�)

where R is a constant representing flow resistance and pext is the

external pressure and plun� is the average lung pressure.

The force balance across the lung cavity with compliance C gives:

plun� = V/C

and, thus:

V (s) = C

1+ RCs ⋅ pext(s)

Simulate a mechanical ventilation system with sinusoidal input,

with frequency 15 cycles per minute and with R = 2.4 and C = 0.1.
Calculate what the input amplitude should be such that the maxi-

mal volume is 0.5 l, and use that in the simulation.What happens

if you try to increase the breathing frequency (to say 1 Hz)? An-
swer the question by looking at the Bode plot in Fig. 9.1. Thereafter

confirm your result by simulation.
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Figure 9.1 Bode plot of the respiratory system.
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Chapter 9. Further Topics in Physiological Control

9.2 Arterial 4-element Windkessel Model: The model is given by the

following set of equations:

dp

dt
= − 1

RC
p+ 1
C
q̇i

dq̇L

dt
= −Ra

L
q̇L +

Ra

L
q̇i

pa = p− Ra q̇L + Ra q̇i

Describe what the different elements of the model represents. Give

the transfer function. Calculate the static gain. Calculate the poles

of the system. Can the system become unstable?

9.3 In lecture 1, the following equation of energy balance was intro-

duced,

E0 = W + Es + Q

where E0 is energy output, W is external work, ES is energy storage

and Q is heat. If you were about to derive the energy efficiency of

some system, how would you do that?
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10. System Identification

10.1 Try to fit a first order polynomial a+ bx to the following measure-
ments by the least squares method. Check your result in MATLAB by

plotting the points and the polynomial obtained.

x y

1 3

3 5

5 6

7 7

a. What happens to your fit if you add an extra measurement (x, y) =
(2, 3.5) to the measurements?

b. What happens if you loose one of the measurements?

10.2

a. Consider the following model,

q̇(t) = −kq(t) + u(t)
y(t) = q(t)/V

where u(t) = Dδ (t) is a bolus injection at time t = 0 of a drug
and y(t) is the measured drug concentration. V is the volume of the
compartment and k is the rate constant. Is k and V identifiable?

b. Consider the following two compartment model where a bolus injec-

tion is given at time zero and where the measured variable is the

concentration of drug in plasma in compartment 1. The equations

describing the model are,

q̇1(t) = −(k01 + k21)q1(t) + u(t)
q̇2(t) = k21q1(t)

y(t) = q1(t)
V1

where q1(0) = q2(0) = 0 and V1 is the volume in compartment 1.
Are you able to determine the three unkown parameters k01, k21
and V1? Compare with part a of this exercise.

10.3 Consider the data set of paired data in the table below.

u y

1 6

2 17

3 34

4 57
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Chapter 10. System Identification

Adopt the following model

y = a+ bu+ cu2

and

a. estimate the parameters a, b and c by the least squares method

analytically.

b. Add noise to some of the measurements y by MATLABs function

randn. How does this affect the estimates of the parameters?

10.4 Consider the measurements (x, y) given in the plot below. Would you
consider all measurements as valid?
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Figure 10.1 Measurements

10.5 Consider the following system,

ẋ =








−1 0

0 −1







 x +








1

1







u

y =


 1 0



 x

Are you able to observe both states?
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Chapter 10. System Identification

10.6 Consider the following scenario: A patient arrives to the hospital

with symptoms of metanol poisoning. The person is also heavily in-

toxicated by ethanol and cannot give any answer to how much, or

when, he consumed the ethanol/methanol. As a basis for determin-
ing the optimal treatment decision, the doctor would like a prognosis

of the level of the toxic metabolite formic acid as well as the methanol

concentration. Serum samples are collected once every hour to as-

sess the level of formic acid. A simplified model of the metabolism

of metanol and formic acid is provided below.

All methanol is believed to already have been absorbed from the gut,

and is modelled by a single compartment with a half-life of 17 hours

and a distribution volume VD of 50 liter. The formic acid is believed

to be formed in the liver with a rate proportional to the metanol

content with a rate constant rL = 0.7mmol ⋅ �−1 ⋅ h−1. The formic
acid is distributed over two compartments, representing blood and

liver, with exchange coefficients kLB = 0.25h−1 (from liver to blood)
and kBL = 0.2h−1 (from blood to liver), and is eliminated from the
liver with an elimination rate of ke = 0.15h−1. The compartment
volumes for the formic acid are VL = 1.2 l (liver) and VB = 5.7 l
(blood). Methanol has a density of 0.798 kg/l and a molar weight of
32 g/mol.

a. Derive a state-space model of the system, with the formic acid blood

concentration as the output variable y, and metanol content as state

x1 [g], liver content of formic acid as x2 [mmol] and blood content of
formic acid as x3 [mmol].

b. Now, estimates of the metanol and formic acid levels may be given

using the blood formic acid concentration samples and an observer.

Let the poles of the observer polymonial be at −0.6,−0.8,−1.0. For-
mulate the analytical expression that needs to be solved in order

to calcluate the observer gain. Use place(X ,Y, p), with X = AT
and Y = CT and p representing the poles, to derive the numerical
result.

c. Use this observer and the formic acid concentration samples (Y)
in the file (Metanoldata.mat) to estimate the states; x̂k+1pk. Initial
measurements of the blood methanol and formic acid concentrations

at patient arrival are 11.3 mmol/l and 17 mmol/l. You may assume
the the liver content of formic acid to be the same as that of blood

upon arrival. Use this to set up an initial state x̂0 of your state

estimation.

d. Normally formic acid assays are not available, but regular methanol

test may be considered. Is it possible to use this biomarker instead

to estimate all the state variables?
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11. Extra

11.1 For a process with input u(t) and output y(t) it holds that

ÿ+ (1+ y4)ẏ =
√
u+ 1− 2

a. Write the differential equation in state space form.

b. Linearize the state space equations around the point u0 = 3, y0 = 1,
ẏ0 = 0.

11.2 A model for the growth of bacteria in a bioreactor is given by

ẋ =








10 1

−1 −1








x +









0

1








u

y =


 1 0



 x

where u is the inflow of a glucose solution to the reactor and y is

the mass of the bacteria.

a. Determine the transfer function from u to y as well as the differen-

tial equation describing the relationship between the input and the

output of the system.

b. Determine a control law u = lrr − Lx for the system such that the
poles of the closed loop system are placed in −1 and −2 and the
stationary gain, from reference to output, is 1.

c. Determine a control law u = lrr− Lx for the system such that both
poles of the closed loop system are placed in −5 and −6 and the
stationary gain, from reference to output, is 1.

d. Compare the two closed loop systems, what is the difference between

the systems (given by the different pole placements)? Hint: plot the
step response of each of the closed loop systems and compare.

11.3 Determine the transfer functions and give differential equations,

describing the relation between input and output for the following

systems, respectively.

a.

ẋ =








−1 0

0 −4








x +









3

2








u

y =


 1 0



 x + 5u

b.

ẋ =








1 4

−2 −3







 x +








−1
1







u

y =


 1 2



 x + 3u
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Chapter 11. Extra

11.4 Determine the impulse and step responses of the systems in assign-

ment 11.3.

11.5 Consider the system

G(s) = 0.25

s2 + 0.6s+ 0.25

a. Calculate the poles and zeros of the system.

b. What is the static gain of the system?

c. Calculate the step response by hand and plot it in MATLAB.

11.6 transfer function from U to Y:

U + G1 + G2 Y

−H2

−H1
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Solutions to Chapter 0. Repetition of

Linear Algebra, Differential equations

and MATLAB

Solve the following exercises by hand. If you are unsure about how

to solve the exercises, please go back to your Linear algebra and

Analysis books and review the material needed.

0.1 a. x(t) = ct+ 1.
b. x(t) = ect.
c. The differential equation is separable. Rewrite it as

1

x2
dx = 2tdt

1

x2
dx = 2tdt

Integrating on both sides gives

−1/x = t2 + c

where c is a constant. Hence, x(t) = −1/(c + t2). x(0) = −1
c
=

1 → c = −1. The solution to the differential equation is therefore,
x(t) = 1

1−t2 .

d. Introduce y1(t) = y(t) and y2(t) = ẏ(t) in order to rewrite the initial
second-order differential equation into two first-order differential

equations as follows

ẏ1 = y2 (0.1)
ẏ2 = 3y1 − 7y2 (0.2)

The initial conditions for y1(t) and y2(t) are

y1(0) = y(0) = 0
y2(0) = ẏ(0) = 1

(0.1) and (0.2) can be written together on matrix form as follows

(

ẏ1

ẏ2

)

=
(

y2

3y1 − 7y2

)

=
(

0 1

3 −7

)(

y1

y2

)
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Solutions to chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

Define v =
(

y1

y2

)

. Then, define f as the following function

f (t,v) = f (t,
(

y1

y2

)

) =
(

ẏ1

ẏ2

)

Hence,

f (t,v) =
(

y2

3y1 − 7y2

)

=
(

0 1

3 −7

)(

y1

y2

)

.

Solve the following exercises using MATLAB. These exercises are in-

spired by or fully extracted from EDA017: Föreläsningsanteckningar,

OCTAVE/MATLAB by Christian Söderberg.

0.2 Use the help function and MathWorks webpage.

0.3 a. Create an anonymous function using the function handle. This func-

tion is only saved in your workspace until you close MATLAB (or
clear you workspace by the clear all command). In case you
would like to save your function as a file in your current folder

(from where you can reach it at another time), use a function m-file
(go to new → function).

y = @(x) exp(−x/2)*cos(2*pi*x);

figure

fplot(y,[−6 3])

title('My fancy plot')

xlabel('x')

ylabel('y')

figure is a command which is useful when you want to create

several plots in the same script. Use the help-command whenever

you need information about one of MATLABs buildt-in functions. In

this case you would write help figure in the command window

and the description of the function should appear.

b.
axis([−4.5 −1 −10 10])

c. % Rewrite y to be accepted by quad/integral (read in the

% description of quad/integral to understand why).

y = @(x) exp(−x/2).*cos(2*pi*x);

integral(y,−4.5,−1)
% or

quad(y,−4.5,−1)
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Solutions to chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

d. f = @(x) x^3+2*x−1; solution = fsolve(f,0)

The answer is 0.4534. Write format long in the command window

(then use the fsolve command) to get more decimals in the answer.
Due to it being numerically calculated f (0.4534) is approximately
zero.

0.4 Go to new → function. A file with a function-shell will appear. The
function shell looks like:

function [ output_args ] = untitled( input_args )

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

end

Replace untitled with the name of your function, input_args

with the input your function needs and output_args with the out-

put your function will give. Between the function-row and the end

you should write the code for the function.

For the particular function of this exercise, it will look as follows

function sumOfDiag = sumOfDiagonal(A)

[n,m] = size(A);

if n ,= m

error('A is not a square matrix')

end

sumOfDiag = sum(diag(A));

end

Where ,= is written as ~= in MATLAB. Save your function as an m-
file in your current folder, by the name of your function. In this case

it would be "sumOfDiagonal.m". Now you can use your function di-

rectly from the command window or from a script which is saved in

the same folder as your function.

To create a matrix in MATLAB use the following principle

my_matrix = [1 2; 3 4];

[ and ] begins and ends the matrix. Elements are separated by

space (or comma) and rows are separated by ;. The resulting matrix
is

(

1 2

3 4

)

0.5 Introduce y1(t) = y(t) and y2(t) = ẏ(t) in order to rewrite the initial
second-order differential equation into two first-order differential

equations as follows
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Solutions to chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

ẏ1 = y2 (0.3)
ẏ2 = 3y1 − 7y2 (0.4)

The initial conditions for y1(t) and y2(t) are

y1(0) = y(0) = 0
y2(0) = ẏ(0) = 1

(0.1) and (0.2) can be written together on matrix form as follows

(

ẏ1

ẏ2

)

=
(

y2

3y1 − 7y2

)

=
(

0 1

3 −7

)(

y1

y2

)

Define v =
(

y1

y2

)

. Then, define f as the following function

f (t,v) = f (t,
(

y1

y2

)

) =
(

ẏ1

ẏ2

)

Hence,

f (t,v) =
(

y2

3y1 − 7y2

)

=
(

0 1

3 −7

)(

y1

y2

)

.

In MATLAB this can be written as

f = @(t,v) [v(2); 3*v(1)−7*v(2)];

Or by matrix multiplication

f = @(t,v) [0 1; 3 −7]*v;

To solve the differential equation write the following code

[t_ode V] = ode45(f,[0 5],[0 1]);

The first input to ode45 is the right part of the differential equation,

the second input is the time span of the solution while the third

is the initial condition of the differential equation. V is a matrix

with two columns, the first column corresponds to y1(t) = y(t) and
the second column corresponds to y2(t) = ẏ(t). t_ode is the times
between 0 and 5 at which ode45 has calculated y1 and y2. Use the

following code to plot y(t) over 0 ≤ t ≤ 5

plot(t_ode,V(:,1))

Solve the following exercises using SIMULINK in MATLAB. These ex-

ercises are taken from Exercises in MATLAB/Simulink, Signals and

Systems by Thomas Munther.
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Solutions to chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

0.6 Start SIMULINK by writing simulink in the MATLAB command win-

dow. This makes the SIMULINK Library Browser window pop up.

Go to File → New → Model. In this window you can start to create
your SIMULINKmodel. Use the Library Browser to find appropriate

blocks and drag them into the model sheet. You can connect two

blocks by their connection spots.

p and b can be defined in the current workspace. Go to display →
blocks and check "Sorted Execution Order". This will numerate the

blocks in the order in which they are first activated.

0.7 a. Before running the simulation go to Simulation → Configuration

Parameters. In Solver Options choose Fixed-step and Solver → Dis-
crete. Set the sample time in each block to 1 [sec].

b. The only difference from the previous model is that the minus sign

in the sum-block is changed to a plus sign.

0.8 Just play around.
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Solutions to Chapter 1. Biochemical

Reactions

1.1 a. Denote the concentrations x = [X ] and y= [Y]

dx

dt
= −k1x + k−1y
dy

dt
= k1x − k−1y

b. Denote the concentrations x = [X ] and y= [Y]

dx

dt
= −2k1x2 + 2k−1y
dy

dt
= k1x2 − k−1y

c.

Denote the concentrations x = [X ], y= [Y] and z = [Z]

dx

dt
= −3k1x3y+ 3k−1z (1.1)

dy

dt
= −k1x3y+ k−1z (1.2)

dz

dt
= k1x3y− k−1z (1.3)

(1.4)

1.2 A matlab script may look as follows:

% Simulation of the substrate, enzyme and product concentrations in a MM

% example

% ds/dt = −k_1 *(se) + k_{−1}*c
% de/dt = −k_1 *(se) + (k_{−1} + k_2)*c

% dc/dt = k_1 *(se) − (k_{−1} + k_2)*c

% dp/dt = k_2 c

%−−−−−−−−−−−−−−−−−−−
% Initial conditions

s(1) = 0.15; % mmol/L

e(1) = 1e−2; % mmol/L

c(1) = 0; % mmol/L

p(1) = 0; % mmol/L

%−−−−−−−−−−−−−−−−−−−
% Parameters

k1 = 0.1;

k3 = 0.01; % k_{−1}
k2= 0.02;

%−−−−−−−−−−−−−−−−−−−
% Run ode−solver simulation

% y = [S E C P]
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Solutions to chapter 1. Biochemical Reactions

dAll = @(t,y) [−k1*y(1)*y(2)+k3*y(3); ...

−k1*y(1)*y(2)+(k3+k2)*y(3); ...

k1*y(1)*y(2)−(k3+k2)*y(3); ...

k2*y(3)];

[t Y] = ode45(dAll,[0 10000],[0.15 1e−2 0 0])

figure(1)

[ax,h1,h2] = plotyy(t,[Y(:,1) Y(:,4)],t,[Y(:,2) Y(:,3)])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')

%

% Also possible to run approximative discretized simulation

for k = 2:10000

s(k) = s(k−1) + k3*c(k−1) − k1*s(k−1)*e(k−1);
e(k) = e(k−1) + (k3+k2)*c(k−1) − k1*s(k−1)*e(k−1);
c(k) = c(k−1) − (k3+k2)*c(k−1) + k1*s(k−1)*e(k−1);
p(k) = p(k−1) + k2*c(k−1);

end

figure(2)

[ax,h1,h2] = plotyy(1:10000,[s' p'],1:10000,[e' c'])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')

Doubling the enzymatic concentration doubles the production rate

since Vmax = k2 ⋅ e0. Likewise since Km = (k2 + k−1)/k1 = 0.3 and
V = Vmaxs/(Km + s), a doubling of s0 from Km/2 to Km means that
the initial reaction rate will become 1.5 times greater.

1.3 The plot indicates that the relationship between the reaction rate

and the substrate concentration goes to saturation in a M-M-like

behavoir, see Fig. 1.1. Vmax and Km are estimated as shown in the

plot.
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Figure 1.1 Graphical estimation of Vmax and KM

37



Solutions to chapter 1. Biochemical Reactions

Lineweaver-Burke plot: The Michaelis-Menten relationship between

substrate concentrations [S] states that:

v = Vmax[S]
Km + [S]

Taking the inverse yields:

1

v
= Km

Vmax

1

[S] +
1

Vmax

Now, the parameters Km/Vmax and 1/Vmax for this linear relation-
ship may be estimated from the plot as seen in Fig. 1.2.
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Figure 1.2 Graphical estimation of Vmax and KM using the Lineweaver-Burke

plot.

1.4 Draw a graph of the compartment representation, see Fig 1.3. Next,
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[S]
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k

Figure 1.3 Compartment model representation of the enzyme inhibition dynam-

ics.
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Solutions to chapter 1. Biochemical Reactions

determine the differential equations governing the reaction dynam-

ics:

d[S]
dt

= −k1[S][E] + k−1[C1] (1.5)
d[I]
dt

= k−3[C2] − k3[E][I] (1.6)
d[C1]
dt

= k1[S][E] − (k−1 + k2)[C1] (1.7)
d[C2]
dt

= k3[E][I] − k−3[C2] (1.8)
d[E]
dt

= (k2 + k−1)[C1] + k−3[C2] − k1[S][E] − k3[E][I] (1.9)
d[P]
dt

= k2[C1] (1.10)

Next, use the steady-state assumptions; d[C1]/dt = d[C2]/dt = 0 to
get

[C1] =
k1

k−1 + k2
[S][E] (1.11)

[C2] =
k3

k−3
[E][I] (1.12)

The conservation of enzymatic mass gives

[E0] = [E] + [C1] + [C2] = [E](1 +
k1

k−1 + k2
[S] + k3

k−3
[I]) (1.13)

Put Eq. (1.10), Eq. (1.11) and Eq. (1.13) together:

V = d[P]
dt

= k2[E0][S]
[S] + k1

k−1+k2 (1+
k3
k−3
[I])

(1.14)

1.5 Blood alcohol level

A matlab script may look as follows:

% BAL simulation

V = −15;% mg/(l*h)

K_m = 5;% mg/dl

VD = 10*(20 + 0.36*80−0.1*25); % dl

% The 'initial value' of the concentration [A] is actually

% the concentration in t = 20 min when the metabolization

% of the alcohol starts.

initial_value_A = 0.02*1000*0.8*1000/VD; % mg/dl

% Define the differential equation y(t) = [A](t)

dAdt = @(t,y) V/60*y/(K_m+y);

% Solve the differential equation

[t, Y] = ode45(dAdt, [0 220], initial_value_A);
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Figure 1.4 Blood alcohol content according to the simulation example.

t = (t+20)/60; % Shifting the time vector 20 min, and changing into

% hours instead of minutes.

Y = [zeros(size(0:0.1:(t(1)−0.01))) Y']; % Adding zeros to the

% value−vector for time 0−20 min.

t = [0:0.1:(t(1)−0.01) t']; % Adding the time between 0−20 minutes

% to the time vector.

plot(t,Y)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...

(about one pint of beer) in 20 minutes','Fontsize',10)

ylabel('BAL [mg/dl]','Fontsize',10)

xlabel('time [h]','Fontsize',10)

% or using discreet approx.

BAL_20 = 0.02*1000*800*1000*1000/VD; % mg/dl

BAL(1:20) = zeros(20,1);

BAL(20) = BAL_20;

der = 0;

for k=21:1:240

BAL(k) = BAL(k−1) + der;

der = −V/60*BAL(k)/(K_m + BAL(k));

end

plot([1:length(BAL)]/60,BAL)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...

(about one pint of beer) in 20 minutes','Fontsize',20)

ylabel('BAL [mg/dl]','Fontsize',20)

xlabel('time [h]','Fontsize',20)

Running the code generates the plot in Fig. 1.4.
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Solutions to Chapter 2. Model Building

and Linearization

2.1

a. By concentration of substrate, we have

dx1

dt
= −x1 + u

dx2

dt
= x1 − x2
y = x2

The states are x1 and x2. The input is u and the output is y.

b.









ẋ1

ẋ2







 =








−1 0

1 −1

















x1

x2







+








1

0







u

y =


 0 1












x1

x2









c.

G(s) = C(sI − A)−1B + D

= (0 1 )
(

s+ 1 0

−1 s+ 1

)−1(
1

0

)

= 1

(s+ 1)2 .

% State the state space matrices

A = [−1 0 ; 1 −1];
B = [1 ; 0];

C = [0 1];

D = []; % Empty matrix

% Construct the state space system

system = ss(A,B,C,D);

% Contruct the transfer function

G = tf(system)

% OR after having decided the transfer function

% analytically use

s = tf('s'); % To create the Laplace variable

G = 1/(s+1)^2;
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2.2

















ẋ1

ẋ2

ẋ3

















=

















0 1 0

0 0 1

−1 −2 −3

































x1

x2

x3

















+

















0

0

1

















u

y =


 1 0 0




















x1

x2

x3

















2.3 a.

ẋ1 = x2
ẋ2 = −

√
x1 − x1x2 + u2

y= x1

b. A stationary point implies ẋ1 = ẋ2 = 0. From the first equation
we directly obtain x2 = 0. Subsequently, the second equation yields√
x1 = u2. Hence there are infinitely many stationary points and
they can be parametrized through t as (x01, x02,u0) = (t4, 0, t).

c. u0 = 1 gives the stationary point (x01, x02,u0) = (1, 0, 1). We let

f1(x1, x2,u) = x2
f2(x1, x2,u) = −

√
x1 − x1x2 + u2

�(x1, x2,u) = x1

Do taylorexpansion of these functions in the stationary point and use

only the linear terms to linearize the system. Start by computing the

partial derivatives

� f1
�x1

= 0 � f1
�x2

= 1 � f1
�u = 0

� f2
�x1

= − 1

2
√
x1
− x2

� f2
�x2

= −x1
� f2
�u = 2u

��
�x1

= 1 ��
�x2

= 0 ��
�u = 0

At the stationary point we have

� f1
�x1

(x01, x02,u0) = 0
� f1
�x2

(x01, x02,u0) = 1
� f1
�u (x

0
1, x

0
2,u

0) = 0

� f2
�x1

(x01, x02,u0) = −
1

2

� f2
�x2

(x01, x02,u0) = −1
� f2
�u (x

0
1, x

0
2,u

0) = 2

��
�x1

(x01, x02,u0) = 1
��
�x2

(x01, x02,u0) = 0
��
�u(x

0
1, x

0
2,u

0) = 0

Use the following variable substitution
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∆x1 = x1 − x01
∆x2 = x2 − x02

∆u = u− u0

The linearized system is then









∆ ẋ1

∆ ẋ2







 =












� f1
�x1 (x

0
1, x

0
2,u

0) � f1
�x2 (x

0
1, x

0
2,u

0)
� f2
�x1 (x

0
1, x

0
2,u

0) � f2
�x2 (x

0
1, x

0
2,u

0)





















∆x1

∆x2







+










� f1
�u (x01, x02,u0)
� f2
�u (x01, x02,u0)











∆u

∆y =




��
�x1 (x

0
1, x

0
2,u

0) ��
�x2 (x

0
1, x

0
2,u

0)












∆x1

∆x2







+ ���u(x
0
1, x

0
2,u

0)∆u

Where the derivates are given as their value in the stationary point.

Using the specific values gives









∆ ẋ1

∆ ẋ2







 =








0 1

−1
2
−1

















∆x1

∆x2







+








0

2







 ∆u

∆y =


 1 0












∆x1

∆x2









2.4 At the sought operating point it holds that

0 = x21x2 + 1
0 = x1x22 + 1

y= arctan x2
x1
+ π 2

8

which yields x01 = −1, x02 = −1 and y0 = π
4
+ π 2

8
. Computation of the

partial derivatives now yields

� f1
�x1

= 2x1x2
� f1
�x2

= x21
� f1
�u =

√
2 cosu

� f2
�x1

= x22
� f2
�x2

= 2x1x2
� f2
�u = −

√
2 sinu

��
�x1

= −x2
x21 + x22

��
�x2

= x1

x21 + x22
��
�u = 4u

With the variable substitution

∆u = u− π

4

∆x1 = x1 + 1
∆x2 = x2 + 1

∆y = y− π

4
− π 2

8
.
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the linearized system becomes









∆̇x1

∆̇x2








=









2 1

1 2

















∆x1

∆x2








+









1

−1








∆u

∆y =




1
2
−1
2













∆x1

∆x2








+ π ∆u.

2.5 Blood Doping

The system dynamics are:

R(k) = (1− f ) ⋅ R(k− 1) + r(k− 1), R(0) = Rre f (2.1)
r(k) = 0.9 ⋅ r(k− 1) + u(k− 1), r(0) = f ⋅ Rre f (2.2)

u(k) =
{

0.025 if k = [1− 19, 41− 100]
0.05 if k = [21− 40]

(2.3)

The matrices in the Simulink discrete state space block thus are:

A =
[ (1− 1/120) 1

0 0.9

]

(2.4)

B =
[

0

1

]

(2.5)

C =
[

0 1

1 0

]

(2.6)

D =
[

0

0

]

(2.7)

(2.8)

The initial conditions are:

x0 =
[

0.25 ⋅ 120

0.25

]

(2.9)

Define epo in the Matlab workspace as:

>> epo(:,1)= 1:100;

>> epo(:,2) = 0.025*ones(100,1);

>> epo(20:40,2)= 0.05;

Further, use the discrete time setting in the solver in simulink.

2.6 The Simulink model can be seen in Fig. 2.1.

If α becomes large the bacteria outgrow the neuthrophiles and un-
controlled bacterial growth occurs.
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Integrator
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Figure 2.1 Simulink model for the Predator-Prey system
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Solutions to Chapter 3. Control in

Physiology 1

3.1 a. The transfer function is

G(s) = C(sI − A)−1B + D

= (−1 1 )
(

s+ 2 0

0 s+ 3

)−1(
5

2

)

+ 2

= 2s
2 + 7s+ 1
s2 + 5s+ 6 .

From the transfer function it is easy to determine the differential

equation

Y(s) = G(s)U(s)
(s2 + 5s+ 6)Y(s) = (2s2 + 7s+ 1)U(s)

ÿ+ 5ẏ+ 6y = 2ü+ 7u̇+ u

b. The transfer function is

G(s) = C(sI − A)−1B + D

= (−2 1 )
(

s+ 7 −2
15 s− 4

)−1(
3

8

)

=

= 2s+ 3
s2 + 3s+ 2.

The differential equation becomes

Y(s) = G(s)U(s)
(s2 + 3s+ 2)Y(s) = (2s+ 3)U(s)

ÿ+ 3ẏ+ 2y = 2u̇+ 3u

3.2 a. Partial fraction expansion of the transfer function yields

G(s) = 2+ 2

s+ 3 −
5

s+ 2

and by applying the inverse Laplace transform, one obtains the im-

pulse response

h(t) = L−1G(s) = 2δ (t) + 2e−3t − 5e−2t, t ≥ 0.

Comment. Because the system matrix was given in diagonal form, another

possibility would have been to compute the impulse response as

h(t) = CeAtB + Dδ (t) =


−1 1












e−2t 0

0 e−3t

















5

2







+ 2δ (t), t ≥ 0.
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The step response is computed by e.g. integrating the impulse re-

sponse

y(t) =
∫ t

0

h(τ )dτ =
∫ t

0

(

2δ (τ ) + 2e−3τ − 5e−2τ
)

dτ

= 2+
[

5

2
e−2τ − 2

3
e−3τ

]t

0

= 1
6
+ 5
2
e−2t − 2

3
e−3t, t ≥ 0.

The step response can also be obtained by the inverse Laplace trans-

form as follows

y(t) = L−1(G(s)⋅1
s
) = L−1

(

2

s
+ 2

s(s+ 3) −
5

s(s+ 3)

)

= 1
6
+5
2
e−2t−2

3
e−3t, t ≥ 0.

In MATLAB, the following code can be used

% Define the matrices

A = [−2 0 ; 0 −3];
B = [5;2];

C = [−1 1];

D = 2;

% Create the state space representation of the system

system = ss(A,B,C,D);

% Impulse response

impulse(system)

% Step response

step(system)

Comment. The δ (t)-part of the impulse response is not depicted when
using impulse in MATLAB. It would be an infinite spike at t = 0.

b. The transfer function has the partial fraction expansion

G(s) = 1

s+ 1 +
1

s+ 2

and the impulse response becomes

h(t) = L−1G(s) = e−t + e−2t, t ≥ 0.

The step response is thus given by

y(t) =
∫ t

0

h(τ )dτ = 3
2
− e−t − 1

2
e−2t, t ≥ 0.

In MATLAB, the following code can be used
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% Define the transfer function from the result in the previous exercise

s = tf('s'); % Determine frequency variable

G = (2*s+3)/(s^2+3*s+2);

% Impulse response

impulse(G)

% Step response

step(G)

3.3 After the Laplace transform, one obtains

sX = AX + BU
Y = CX + DU

Solve for X

(sI − A)X = BU
X = (sI − A)−1BU

This gives

Y = C(sI − A)−1BU + DU =
(

C(sI − A)−1B + D
)

U

3.4 a. The poles are the solutions of the characteristic equation s2+4s+3 =
0, i.e. s = −1 and s = −3. The system lacks zeros. The poles are in
the left half-plane and the system is therefore stable.

b. The input (an impulse) has the Laplace transform U(s) = 1. The
output becomes

Y(s) = G(s)U(s) = 1

s2 + 4s+ 3 =
1

(s+ 1)(s+ 3)
Inverse Laplace transformation gives

h(t) = e
−t − e−3t
2

The following code results in a plot of the impulse response:

s = tf('s');

G = 1/(s^2+4*s+3);

impulse(G)

3.5 To be (asymptotically) stable, all eigenvalues of the system matrix
A must lie strictly within the left half plane (LHP). I.e. Re(λ i) < 0
∀ i.

The eigenvalues of A are given by the characteristic equation

det(λ I − A) = 0

which in this case has two solutions, λ1 = −i and λ2 = i. Since
the eigenvalues do not lie strictly within the LHP, the system is not

(asymptotically) stable.
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3.6 a.

Y = G1(U + G2Y)
Y(1− G1G2) = G1U

Y = G1

1− G1G2
U

b.

Y = G2(H1U + G1U + H2Y)
Y(1− G2H2) = (G2H1 + G2G1)U

Y = G2H1 + G2G1
1− G2H2

U

c. Introduce the auxiliary variable Z, being the output of G1

Z = G1(U + G3(Z + G2Z))
Z(1 − G1G3 − G1G3G2) = G1U

Z = G1

1− G1G3 − G1G3G2
U

Y = G2G1

1− G1G3 − G1G3G2
U

3.7 a. The output is given by

y(t) = pG(3i)p sin
(

3t+ argG(3i)
)

where

pG(iω )p = 0.01
√
1+ 100ω 2√

1+ω 2
√
1+ 0.01ω 2

and

argG(iω ) = arctan 10ω − arctanω − arctan 0.1ω

For ω = 3 one obtains pG(iω )p = 0.0909 and argG(iω ) = −0.003
which gives

y(t) = 0.0909 sin(3t− 0.003)

b. Reading from the plot yields pG(3i)p ( 0.09 and argG(3i) ( 0. We
obtain

y(t) = 0.09 sin 3t
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Solutions to Chapter 4. Control in

Physiology 2

4.1 a. Laplace transformation of the differential equation yields

sY(s) + 0.01Y(s) = 0.01U(s)

The transfer function GP(s) is thus given by

Y(s) = GP(s)U(s) =
0.01

s+ 0.01U(s)

b. The block diagram of the closed loop system becomes

Σ
r e u y

GR GP

−1

The transfer function of the closed loop system becomes

G(s) = GP(s)GR(s)
1+ GP(s)GR(s)

c. GR(s) = K , K is a constant, and the transfer function of the closed
loop system becomes

G(s) = GP(s)GR(s)
1+ GP(s)GR(s)

=
0.01
s+0.01K

1+ 0.01
s+0.01K

= 0.01K

s+ 0.01+ 0.01K

d. The desired and actual characteristic polynomials are the same if

all their coefficients match. Identification of coefficients yields

0.1 = 0.01+ 0.01K \ K = 9

4.2 a. For the closed loop system it holds that

Y(s) = N(s) + GP(s)GR(s)R(s) − GP(s)GR(s)Y(s)

from which one obtains

Y(s) = 1

1+ GP(s)GR(s)
N(s) + GP(s)GR(s)

1+ GP(s)GR(s)
R(s)

Here we see the transfer function from both inputs, n and r, to y.

The one we are interested in is the transfer function from n to y

Y(s) = 1

1+ GP(s)GR(s)
N(s) (4.1)
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Solutions to chapter 4. Control in Physiology 2

b. Inserting GP(s) = 1
s+1 and GR(s) = K into (4.1) yields the relations

Y(s) = s+ 1
s+ 1+ K N(s) =: Gyn(s)N(s)

In stationarity it holds that

y(t) = ApGyn(iω )p sin(ω t+ argGyn(iω ))

= A
√
1+ω 2

√

(K + 1)2 +ω 2
sin

(

ω t+ arctanω − arctan ω

K + 1

)

c. With A = 1 and K = 1 the amplitudes of the oscillations

A =

√

1+ω 2

4+ω 2

For ω = 0.1 rad/s the amplitude become

A ( 0.5

while ω = 10 rad/s yields
A ( 1

4.3 a. The sensitivity function is given by

S(s) = 1

1+ GP(s)GR(s)
= 1

1+ 6.5
(s+1)3

= s3 + 3s2 + 3s+ 1
s3 + 3s2 + 3s+ 7.5

b. For ω = 0 rad/s we have pS(iω )p = 1/7.5. Constant load distur-
bances are thus damped by a factor 7.5. The sensitivity functions

has its maximum value pS(iω )p ( 10 at ω ( 1.6 rad/s.

4.4 Open-loop transfer function:

Go(s) =
K (s+ 10)(s+ 11)
s(s+ 1)(s+ 2) = K Q(s)

P(s)

Closed-loop system becomes:

G(s) = Go(s)
1+ Go(s)

= KQ(s)
P(s) + KQ(s)

Characterstic equation:

P(s) + KQ(s) = 0 \

s(s+ 1)(s+ 2) + K (s+ 10)(s + 11) = 0 \
s3 + (3+ K )s2 + (2+ 21K )s + 110K = 0
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Requirement for stability is that all coefficients of:

s3 + (3+ K )s2 + (2+ 21K )s + 110K

are positive, and that

(3+ K )(2 + 21K ) > 110K

THe inequality gives

K 2 − 15
7
K + 2

7
> 0

Which is fulfilled for K > 2 and K < 1/7. Thus, the closed-loop
system is stable for:

0 < K < 1
7

and

K > 2

4.5 The problem is solved using the Nyquist criterium. The open-loop

system is given by:

GP(s) =
e−9s

(1+ 20s)2

The phase of the process is:

argGP(iω ) = −9ω − 2arctan(20ω )

We want to find the frequency for which the phase is −180○. This
can be calculated by:

−9ω − 2arctan(20ω ) = −π

This equation lacks analytical solutions. After an initial guess and

some numerical iterations we get:

ω 0 ( 0.1

Next we determine the gain at this frequency:

pG(iω 0)p =
1

1+ 400ω 20
= 0.2

This yields the amplitude margin:

Am =
1

G(iω 0)
= 5

Therefore, the gain K = 5 is the largest gain we can allow and still
maintain stability.
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Solutions to Chapter

5. Pharmacokinetics and Tracers

5.1 C(t) is the concentration at time t. The initial condition and balance
equation of the system are the following

C0 = 300 [units/ml]
dC

dt
= −kC

The solution of the differential equation is

C(t) = C0e−kt

After 8 days, the concentration is halved. Therefore, if the half-life

is stated as t1/2 = 8, the concentration at t1/2 is given by

C(t1/2) =
C0

2
= C0e−kt1/2

Thus k is,

k = ln(2)
t1/2

= 0.6931
8

= 0.0866 days−1

Hence the formula for the concentration is given by

C(t) = C0e−0.0866⋅t [units/ml] (5.1)

When t = 7 [days]

C(7) = C0e−0.0866⋅7 = 163 [units/ml]

Plot equation (5.1) using MATLAB

5.2 Use the same procedure as in exercise 5.1 to get k. Then use the

following equation

log( C0

0.4 ⋅ C0
) = k ⋅ t

2.3

or of course if you use the natural logarithm,

ln( C0

0.4 ⋅ C0
) = k ⋅ t

It takes approximately 8 days.
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5.3 Use the same equation as in exercise 5.2. Set t = 25 [days] and
C0/C = 90/80 to determine k. Then determine t1/2 by using the
derived k and C0

C
= 2.

The half-life is 147 days.

5.4

a. Start by drawing a diagram of the compartments.

b. The state-space representation only considering the oral input be-

comes:






Q̇G

Q̇B

Q̇L






=







−(ke,G + kGB) 0 0

kGB −(ke,B + kBL) kLB

0 kBL −(ke,L + kLB)













QG

QB

QL






+







1

0

0






Qod

y= 1

VL

[

0 0 1

]







QG

QB

QL







where QG , QB , QL [mg/dl], are the drug masses in the gut, body
and liver compartment, and Qod [mg/min] is the rate of the orally
administered drug.

c. Simulating the system with this oral prescription produces the curve

in Fig. 5.1 below. Se code in the end of the solution to this exercise.

d. Simulating the system with this oral prescription every 24 hours

produces the blue curve in Fig. 5.2 below. The output oscillates heav-

ily with a 24 hour period. An alternative medication strategy to re-

duce the oscillations and to keep the concentration more even could

be to administer the drug in half the dose every 12 hours instead

(green curve).

e. To determine the constant iv-dose we need to augment the original

model to incorporate this extra input. The new system, with Qiv
[mg/min] as the intravenuous injection rate, becomes:






Q̇G

Q̇B

Q̇L






=







−(ke,G + kGB) 0 0

kGB −(ke,B + kBL) kLB

0 kBL −(ke,L + kLB)













QG

QB

QL






+







1 0

0 1

0 0







[

Qod

Qiv

]

y= 1

VL

[

0 0 1
]







QG

QB

QL
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Figure 5.1 Liver concentration at 500 mg dose

To determine the constant dose Qciv needed to maintain a steady-

state concentration yc = 104 mg/dl, the static gain GYQiv(0) of the
transfer function from input Qiv to the output y is calculated. The

transfer function is:

GYQiv(s) = C(sI − A)−1B2

where B2 is the second column of the B-matrix. A natural starting

point is to calculate the inverse of sI− A, here called Z. Calculating
the inverse to a 3x3 matrix by hand is generally a strenious and

boring task. However in this case we can exploit the fact that our B

and C matrices only single out one of the elements of Z:

GYQiv(s) =
[

0 0 1
VL

]

Z







0

1

0






= 1

VL
Z32

Now, from the ’book of common results’, p. 2, where M23 is the matrix

retrieved when eliminating row 2 and column 3 from A:

Z32 = −
pM23p
psI − Ap

= (k1 + ke1)k23
(s+ k12+ ke1)((s+ k23+ ke2)(s+ k32+ ke3) − k23k32)

Z32(0) =
(k12 + ke1)k23

((k12 + ke1))((k23 + ke2)(k32 + ke3) − k23k32)

= k23

k23ke3 + k32ke2 + ke2ke3

GYQiv(0) =
1

VL
Z32(0) = 396.12
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Solutions to chapter 5. Pharmacokinetics and Tracers

and, thus:

Qciv =
yc

GYQiv(0)
= 0.2625

Simulations in Matlab (red curve) in Fig 5.2 below confirms that
the constant intravenous injection eliminates the oscillations in liver

concentration.
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Figure 5.2 Liver concentration at different medication strategies

Code for simulating the system with all three types of input.

%−−−−−−−−−−−−−
% Parameters

%−−−−−−−−−−−−−
ke1 = 0.02;% min^−1
ke2 = 3e−4;% min^−1
ke3 = 8e−4;% min^−1
k12 = 0.1;% min^−1
k23 = 4e−3;% min^−1
k32 = 1e−3;% min^−1
VL = 2.7; %dl

%−−−−−−−−−−−−−−
% Define system

%−−−−−−−−−−−−−−
A = [−(ke1+k12) 0 0;...

k12 −(ke2+k23) k32;...

0 k23 −(ke3+k32)];
B = [1 0;0 1;0 0]; % First input corresponds to oral and the second to iv

C = 1/VL*[0 0 1]; % Liver concentration [mg/dl]

D = [];

sys = ss(A,B,C,D);

%−−−−−−−−−−−−−−−−
% Setting up the input signals for the different cases

% 1. Oral dose 500 mg/24 hours

u_tab = [100*ones(5,1); zeros(24*60−5,1)]; % 500 mg tablet dissolved

% over 5 min

u = repmat(u_tab,7,1); %repeat the dose

% 2. With half dose and 12 hour interval
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Solutions to chapter 5. Pharmacokinetics and Tracers

u_tab = [50*ones(5,1); zeros(12*60−5,1)]; % 250 mg tablet dissolved

% over 5 min

u2 = repmat(u_tab,14,1); %repeat the dose

% 3. Constant iv infusion

% Determine iv dose size

static_gain = dcgain(sys);

u_iv_mag = 112/static_gain(2); % U2(0) = Y(0)/G(0);

u_const = u_iv_mag * ones(length(u),1);

%−−−−−−−−−−−−−−−−−−−−−
% Simulation time

T = [0:1:length(u)−1];
% Initial values

x0 = [0;0;0]; % We assume that we start without any drug in the body

% Simulate

[y_1,T,x] = lsim(sys,[u zeros(size(u))],T,x0);

[y_2,T,x_alt] = lsim(sys,[u2 zeros(size(u))],T,x0);

[y_3,T,x_alt] = lsim(sys,[zeros(size(u)) u_const],T,x0);

figure

plot(T/60,[y_1 y_2 y_3],'Linewidth',2)

legend('500 mg every 24 h','250 mg every 12h','constant IV infusion',...

'Location','SouthEast')

ylabel('Liver concentration [mg/dl]')

xlabel('Time [h]')

set(findall(gcf,'−property','FontSize'),'FontSize',20)
xlim([0 168])
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Solutions to Chapter 6. Biomechanics

6.1 a. The closed loop system becomes

{

ẋ = (A− BL)x + Blrr
y= Cx

The characteristic equation is thus

det(sI − A+ BL) = s2 + (0.5+ 3l1)s+ 3l2 = 0

We need (s + 4 + 4i)(s + 4 − 4i) = s2 + 8s + 32 = 0. Identification
of coefficients yields l1 = 5/2 = 2.5, l2 = 32/3 = 10.7. The closed
loop transfer function is G(s) = C(sI−A+BL)−1Blr. The stationary
gain is G(0) is unity if

G(0) = C(−A+ BL)−1Blr =
3lr

32
= 1

yielding lr = 32/3.

b. The closed loop system becomes

{

ẋ = (A− BL)x + Blrr
y= Cx

The characteristic equation is thus

det(sI − A+ BL) = s2 + (3+ l1 + 2l2)s+ 2(1+ l1 + l2) = 0

We need (s+ 4)2 = s2 + 8s + 16 = 0. Identification of coefficients
yields l1 = 9, l2 = −2. The closed loop transfer function is G(s) =
C(sI − A+ BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+ BL)−1Blr =
lr

4
= 1

yielding lr = 4.

This type of controller can only be designed when the system is con-

trollable. Information on controllability is given in the basic course

in control.

6.2 With x1 = y and x2 = ẏ the system is given by








ẋ1

ẋ2







 =












0 1

− k
m

− c
m





















x1

x2







+












0
1

m













f

y =


 1 0












x1

x2
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Solutions to chapter 6. Biomechanics

6.3 Laplace transformation of the differential equation mÿ+ cẏ+ ky= f
yields

(ms2 + cs+ k)Y = F
and the transfer function is hence

G(s) = 1

ms2 + cs+ k .

The poles are s = −c/2m± i
√

k/m − c2/4m2. A change in k implies
a change of the imaginary part of the poles. A change in c affects

both the real and imaginary parts.

The poles cannot end up in the right half plane due to physical

reasons, since c ≥ 0 and m > 0.

6.4 The system can be written as

ẋ =

















0 ω 0 0

ω 0 0 0

0 0 0

















x +

















a

0

b

















= Ax + Bu

With state feedback, u = −l1x1−l2x2−l3x3 = −Lx, the characteristic
equation of the closed loop system becomes

det
(

sI − (A− BL)
)

=

∣

∣

∣

∣

∣

∣

s+ al1 −ω 0 + al2 al3

−ω 0 s 0

bl1 bl2 s+ bl3

∣

∣

∣

∣

∣

∣

=

= s3 + (bl3 + al1)s2 +ω 0(−ω 0 + al2)s−ω 20bl3 = 0

Comparison with the wanted characteristic equation

(s+α )(s2 + 2ζ ω s+ω 2) = s3 + (α + 2ζ ω )s2 + (2αζ ω +ω 2)s+αω 2

gives






































l1 =
1

a

(

α
(

1+ ω 2

ω 20

)

+ 2ζ ω

)

l2 =
1

aω 0
(2αζ ω +ω 2 +ω 20)

l3 = −
αω 2

bω 20
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Solutions to Chapter 7. Glucose and

Insulin Dynamics

7.1 Insulin Sensitivity:

�Ġ/�G = −(p1 + X (t)) (7.1)
SI = �2Ġ/�G�I = −�X (t)/�I (7.2)

Steady state conditions of insulin means:

dX (t)
dt

= 0 = −p2X (t) + p3(I(t) − Ib), X (0) = 0, I(0) = Ib

X (t) = p3
p2
(I(t) − Ib)

SI = −�X /�I = −
p3

p2

The experiment is dynamic and steady-state conditions of the insulin

level is not valid for most part of the experiment.

7.2 Minimal Model Simulation: The glucose response can be seen in Fig.

p3
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1
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From
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From

Workspace

[time_int’,insulin_int’]

−p3

−K−

−p2

−K−

−p1

−K−

−1

−1

Figure 7.1 Minimal model Simulink model.

2.

7.3 k�ri represents the kinetic coefficient between the solid and the liq-
uid compartments of the stomach. In comparison between boiled

potatoes and mashed potatoes it seems likely that the mashed pota-

toes would have a larger value for this parameter, thereby resulting

in faster dynamics.
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Figure 7.2 Minimal model Simulink model.

7.4 The differential equation becomes:

ĠISF(t) = −k3 ⋅ GISF(t) + k3Gp (7.3)

L(GISF) =
k3

k3 + s
L(Gp) (7.4)

Thus, K = 1 and τ = 1/k3
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Solutions to Chapter 8. The

Hodgkin-Huxley model

8.1 The Nernst equation for ion [i] is given by

Ei =
RT

zF
ln

(

Cout,i

Cin,i

)

where z - valence charge, Cout the ion concentration outside the cell,

Cin the ion concentration inside the cell, R - thermodynamic gas

constant, F - Faraday constant and T - temperature in Kelvin.

R = 8.31447 [J/mol⋅K], T = 273 + 25 [K] and F = 9.648534 ⋅ 104

[C/mol]. Hence, RT/F = 0.0257 [V] or 25.7 [mV].

Ion Inner conc. [µM] External conc. [µM] z

Na+ 12 145 1

K+ 155 4 1

Cl− 4.2 123 -1

Using the Nernst equation with the given values results in ENa =
64, EK = −94 and ECl = −86 [mV].
If T is lowered by 20 degrees all equilibrium potentials will be low-

ered by 1 − (273 + 25 − 20)/(273 + 25) = 0.0671, approximately 7
%.

8.2 a. How well a certain ion can pass through the membrane. Larger

Pi means that ion i har a large possibility of passing through the

membrane, due to many ion-channels being open.

b. If PNa would rise, this would shift the membrane potential closer to

the equilibrium potential of sodium (64 [mV]).

8.3

Cm
dV

dt
= −INa − IK − IL + Iext

where Cm is the membrane capacitance, Ii is the respective ion cur-

rents given by the functions below and Iext is an external applied

current.

INa = �Nam3h (V − ENa)
IK = �Kn4 (V − EK )
IL = �L (V − EL)

When simulating the behavior of the membrane potential through

this differential equation, the notion of the threshold of the neuron

describes a non-linear behavior.
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Solutions to chapter 8. The Hodgkin-Huxley model

8.4 a. m(t) - Na+ activation (of channels)
h(t) - Na+ de-activation (of channels)
n(t) - K+ activation (of channels)

b. % Channel gating kinetics

% Functions of membrane voltage

alpha_m = @(V) 0.1*(V+45)./(1−exp(−(V+45)./10));
beta_m = @(V) 4*exp(−(V+70)./18);
alpha_h = @(V) 0.07*exp(−(V+70)./20);
beta_h = @(V) 1./(1+exp(−(V+40)./10));
alpha_n = @(V) 0.01*(V+60)./(1−exp(−(V+60)./10));
beta_n = @(V) 0.125*exp(−(V+70)./80);

Vsweep = [−90 70];

fplot(alpha_m,Vsweep, 'r−');
hold on

fplot(beta_m,Vsweep, 'r−−');

fplot(alpha_h,Vsweep,'g−');
fplot(beta_h,Vsweep, 'g−−');
fplot(alpha_n,Vsweep,'b−');
fplot(beta_n,Vsweep, 'b−−');
legend('alpha_m', 'beta_m', 'alpha_h', 'beta_h','alpha_n', 'beta_n' , ...

'Location', 'SouthEast');

xlabel('V (mV)');

ylabel('Kinetics Value');

xlim([Vsweep(1) Vsweep(end)]);

title('Channel Gating Kinetics');

8.5 g_L = 0.3;

E_L = −59.387;
C_m = 1;

I_L = @(V) g_L*(V−E_L);

I_ext = @(t) 5.* floor(t ./ 100);

dVdt_leak = @(t, V) (I_ext(t) − I_L(V)) ./ C_m;

[t_leak, V_leak] = ode45(dVdt_leak, [0 500], E_L);

figure

subplot(2,1,1);

plot(t_leak, V_leak, 'k');

title('1B: Leaky Passive Neuron');

ylabel('V (mV)');

xlabel('t (ms)')

subplot(2,1,2);

plot(t_leak, I_ext(t_leak), 'k');

xlabel('t (ms)');

ylabel('I_{ext} (\mu{A}/cm^2)');

ylim([−1 max(I_ext(t_leak))+1]);

This simulates a passive membrane, it reacts to the external input

by only increasing the membrane potential. It will never create an

action potential.
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Solutions to chapter 8. The Hodgkin-Huxley model

8.6 With states x1 = vout and x2 = v̇out, the system is given by
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Figure 8.1 Electrical circuit of the HH-model

8.7 G(s) = 1

LCs2 + RCs+ 1
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Solutions to Chapter 9. Further Topics in

Physiological Control

9.1 Pulmonary Ventilation: First, determine the gain at frequency 0.25

Hz:

pG(π /2i)p = 0.0936
Thus, u = 0.5/pG(π /2i)psin(π t/2) Simulate by using, e.g., lsim or

Simulink. Increasing the breathing frequency with the same pres-

sure magnitude makes the breathing more shallow.

9.2 Windkessel: The system matrices become:

A =
[

− 1
RC

0

0 − Ra
L

]

B =
[

1
C
Ra
L

]

C =
[

1 −Ra
]

D = Ra

The transfer function is given by:

G(s) = C(sI − A)−1B = R

RCs+ 1 −
Ra

L
Ra
s+ 1

+ Ra

Static gain: G(0) = R.
The system can not become unstable since R,C,Ra are positive num-

bers.

9.3

E f f iciency= Workdone

Ener�yExpenditure =
W

W + Q
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Solutions to Chapter 10. System

Identification

10.1 Let the regressor matrix be

Φ =











1 x1

1 x2

1 x3

1 x4











=











1 1

1 3

1 5

1 7











where xi is the i-th value of x in the table given in the exercise.

The least squares solution is then

(

â

b̂

)

=
(

ΦTΦ
)−1

ΦT y=
(

2.65

0.65

)

where y = (3 5 6 7 )T .
Hint: there is a formula on how to compute the inverse of a 2-by-2

matrix.

In MATLAB it could be calucluated as

P = [1 1; 1 3; 1 5; 1 7];

y = [ 3 5 6 7]';

e = P\y;

% or

e = inv((P'*P))*P'*y;

Where a = e(1) and b =e(2). This uses the least squares method

to fit a+ bx to the points. Plot the points and the line in the same
plot to see the fit.

a = e(1);

b = e(2);

f = @(x) a +b*x;

figure

fplot(f,[1 7])

hold on

plot([1 3 5 7],y,'*r')

a. If you add an extra measurement the fit will change, meaning that

your fit is uncertain. In reality when you fit a function to measure-

ments you’ll have more then 4 measurement at hand.

b. If you loose one measurement the fit will change as well, differently

dependent on which measurement you loose. Loss of measurements

are common in reality and must be taken into account.

66



Solutions to chapter 10. System Identification

10.2

a. The transfer function is G(s) = β
s+α where β = 1/V1 and α = k.

These are both identifiable. The system response can be determined

as y(t) = Dβ e−α t. By examining the plot of the response β can be
detrmined as β = y(0)/D. Thereafter, α can be determined by any
other point on the curve of the system response.

b. The transfer function is G(s) =
1
V1

s+k21+k01 =
β
s+α . V1 is uniquely

identifiable but k01 and k21 are not. Can only determine the sum of

k01 and k21, not separate them.

10.3

a. Let the regressor matrix be

Φ =











1 u1 u21

1 u2 u22

1 u3 u23

1 u4 u24











=











1 1 1

1 2 4

1 3 9

1 4 16











where ui is the i-th value of u in the table given in the exercise.

The least squares solution is then





â

b̂

ĉ



 =
(

ΦTΦ
)−1

ΦT y =





1

2

3





where y = ( 6 17 34 57 )T .
Hint: there is a formula on how to compute the inverse of a 3-by-3

matrix.

b. Dependent on the noise it could change the estimates in either di-

rection. It is common to have noisy measurements and therefore

important to use proper methods to account for this.

10.4 The third measurement from the left, (x, y) = (5, 25), seems off. This
could be an outlier and should be considered with caution.

10.5 No, due to that you only measure x1 and its dynamics are not de-

pendent on x2 you are not able to observe the second state x2.

10.6

a. First, let’s consider the methanol metabolism. Using the information

about the half-life the elimination constant is determined to:

ke,M =
lo�2
T1/2

= 0.041h−1
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Solutions to chapter 10. System Identification

Using this together with the information about the formic acid metabolism,

a state-space model(A,C, no B or D since there is no input) of
the combined compartment models of the methanol and formal acid

metabolism becomes:

A =







−ke,M 0 0

rL −(kLB + ke,F) kBL

0 kLB −kBL







C = [001/VB ]

with x1 representing methanol content, x2 the liver content of formic

acid and x3 the blood content of formic acid. Using an observer the

state estimation becomes

˙̂x = Ax̂ + K (y− ŷ)
ŷ = Cx̂

and

x̃ = x − x̂
˙̃x = (A− KC)x̃

where





K =

k1

k2

k3







The characteristic polynomial:

det(sI − A+ KC) =

∣

∣

∣

∣

∣

∣

∣

s+ ke,M 0 k1/VB
−rL s+ (kLB + ke,F) −kBL + k2/VB
0 −kLB s+ kBL + k3/VB

∣

∣

∣

∣

∣

∣

∣

= (s+ ke,M)(s+ (kLB + ke,F)(s+ kBL + k3/VB)+
kLB(−kBL + k2/VB)) + rL(kLBk1/VB)

should match:

(s− p1)(s− p2)(s− p3)

where pi, i = [1, 2, 3] are the specified poles. After some algebra we
can conclude that:

k1 =
VB

rLkLB
(p1p2p3 − (ke,MkLBk2/VB + ke,MkEFk3/VB

+ ke,MkLBk3/VB + ke,MkEFkBL))

k2 =
VB

kLB
(p1p2 + p1p3 + p2p3 − ke,M(kLB + ke,F + kBL + k3/VB)

− kLBk3/VB − ke,FkBL − ke,Fk3/VB)
k3 = VB(p1 + p2 + p3 − ke,M − kLB − ke,F − kBL)

We can use place to verify the result:
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Solutions to chapter 10. System Identification

% System

A = [−0.041 0 0 ; 0.7 −0.4 0.2; 0 0.25 −0.2];
C = [0 0 1/V_B]; % We measure the formic acid concentration in blood

D = [];

% Determine observer gain

K = place(A',C',[−0.6 −0.8 −1.0])';
% Verify the eigenvalues of A−KC
eig(A−K*C)

b. Now, the measurements can be used as input in the observer system

to estimate the states:

˙̂x = (A− KC)x̂ + Ky
(ŷ = Cx̂)

Below is a matlab script for determining the observer and to try the

observer on the data.

% Parameters

V_D = 50; % methanol distribution volume [liter]

V_L = 1.2; % Formic acid, liver volume [liter]

V_B = 5.7; % Formic acid, blood volume [liter]

% System

A = [−0.041 0 0 ; 0.7 −0.4 0.2; 0 0.25 −0.2];
C = [0 0 1/V_B]; % We measure the formic acid concentration in blood

D = [];

% Determine observer gain

K = place(A',C',[−0.6 −0.8 −1.0])';
% Simulate with data

load('metanol_data')

% Set up the system for the estimated state using the observer.

% Here, the measurements will act as an input variable, and thus K

% will be our B−matrix.
sys_est = ss(A−K*C,K,C,D);
x1_hat_0 = 11.3e−3*32*50; % Initial value of metanol converted

% to g in V_d

x23_hat_0 = Y(1)*V_B; % Initial value of formic acid in liver

% and in blood

x_hat_0 = [x1_hat_0;x23_hat_0;x23_hat_0];

[Y_hat,T_hat,X_hat] = lsim(sys_est,Y(2:end),[2:length(Y)],x_hat_0);

%−−−−−−−−−−−−
% Plots

figure

%

subplot 311

plot(Y,'Linewidth',2)

hold all

plot(T_hat,Y_hat,'Linewidth',2)

ylabel(sprintf(['FA blood conc.\n[mmol/l]']))

%

subplot 312

plot(1000*X_met,'Linewidth',2)

hold all

plot(T_hat,1000*X_hat(:,1)/(32*V_D),'Linewidth',2)

ylabel(sprintf('Met. conc.\n [mmol/l]'))

%

subplot 313

plot(X_fliver,'Linewidth',2)

hold all

69



Solutions to chapter 10. System Identification

plot(T_hat,X_hat(:,2)/V_B,'Linewidth',2)

ylabel(sprintf('FA liver conc.\n [mmol/l]'))

xlabel('Time [h]')

legend('Data','Estimate')

set(findall(gcf,'−property','FontSize'),'FontSize',20)

The code produces the plot in Fig. 10.1 below.
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Figure 10.1 Measurements

c. No, it is not since the system is not fully observerable using this

measurement. This can be seen from that the observability matrix

O does not have full rank.

O=







C

CA

CA2







when

C = [1/VD00]

With

C = [001/VB ]

however (using the formic acid blood concentration), the observabil-
ity matrix becomes

O =







0 0 0.17

0 0.04 −0.04
0.03 −0.03 0.02







and clearly has full rank.
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Solutions to Chapter 11. Extra

11.1a. Let x1 = y and x2 = ẏ. The state space form becomes

ẋ1 = x2
ẋ2 = −(1+ x41)x2 +

√
u+ 1− 2

y = x1

b.

∆ ẋ =








0 1

0 −2







 ∆x +








0
1
4







 ∆u

∆y =


 1 0



 ∆x

where ∆x =








∆x1

∆x2








and ∆u = u − 3, ∆x1 = x1 − 1, ∆x2 = x2 − 0

and ∆y = y− 1.

11.2

a. The transfer function is

G(s) = C(sI − A)−1B + D

= ( 1 0 )
(

s− 10 −1
1 s+ 1

)−1(
0

1

)

= 1

(s− 10)(s + 1) + 1.

It gives the following relationship

Y(s) = 1

(s− 10)(s+ 1) + 1U(s)

Which can be rewritten as

s2Y(s) − 9sY(s) − 9Y(s) = U(s)

Then, use the inverse Laplace transform to get the differential equa-

tion

ÿ− 9ẏ− 9y = u
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Solutions to chapter 11. Extra

b. The closed loop system becomes

{

ẋ = (A− BL)x + Blrr
y= Cx

The characteristic equation is thus

det(sI − A+ BL) = s2 + (l2 − 9)s+ l1 − 10l2 − 9 = 0

We need (s+1)(s+2) = s2+3s+2 = 0. Identification of coefficients
yields l1 = 131, l2 = 12. The closed loop transfer function is G(s) =
C(sI − A+ BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+ BL)−1Blr = 0.5lr = 1

yielding lr = 2.

c. The closed loop system becomes

{

ẋ = (A− BL)x + Blrr
y= Cx

The characteristic equation is thus

det(sI − A+ BL) = s2 + (l2 − 9)s+ l1 − 10l2 − 9 = 0

We need (s+5)(s+6) = s2+11s+30 = 0. Identification of coefficients
yields l1 = 239, l2 = 20. The closed loop transfer function is G(s) =
C(sI − A+ BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+ BL)−1Blr = lr/30 = 1

yielding lr = 30.

d. The second one is faster.

11.3a. G(s) = 5s+ 8
s+ 1 , ẏ+ y = 5u̇+ 8u

b. G(s) = 3s
2 + 7s+ 18
s2 + 2s+ 5 , ÿ+ 2ẏ+ 5y = 3ü+ 7u̇+ 18u

11.4a. h(t) = 5δ (t) + 3e−t, y(t) = 8− 3e−t, t ≥ 0

b. h(t) = 3δ (t) + e−t sin 2t+ e−t cos 2t = 3δ (t) +
√
2e−t sin

(

2t+ π
4

)

y(t) = 3+ 1
5
e−t (3+ sin 2t− 3 cos 2t) , t ≥ 0

11.5a. The poles are the solutions the characteristic equation s2 + 0.6s +
0.25 = 0, i.e. s = −0.3± 0.4i. The system lacks zeros.

b. The static gain is G(0) = 1.
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Solutions to chapter 11. Extra

c. The input (a step) has the Laplace transform U(s) = 1/s. The output
becomes

Y(s) = G(s)U(s) = 0.25

s(s2 + 0.6s+ 0.25)
Because this system has complex poles, we first rewrite it as

Y(s) = ω 2

s(s2 + 2ζ ω s+ω 2)

where ω = 0.5 and ζ = 0.6. We then utilize the inverse Laplace
transformation (transform no. 28) and obtain

y(t) = 1− 1.25e−0.3t sin(0.4t+ 0.9273)

d. The step response is shown below.

Step Response
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11.6

Y = G2(−H2Y + G1(U − H1Y))
Y(1+ G2H2 + G2G1H1) = G2G1U

Y = G2G1

1+ G2H2 + G2G1H1
U
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