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1. The half life of a drug solution is 6 days. Assume it is eliminated from

plasma as a linear process after it has been injected to plasma.

a. You are given some measurements of the concentration of the drug at some

time and the corresponding velocity at that same time, see Tab. 1 below.

Use the least squares method to determine the rate constant for the process.

Table 1: Drug data for problem 1

Concentration [units] Velocity [units/days]
0.9 -0.12

2.0 -0.27

3.3 -0.33

4.1 -0.58

(1 p)

b. Determine the rate constant from the half life instead. Compare the re-

sult with subproblem a. and mention one fact that could account for the

difference in the result.

(1.5 p)

c. If injected with the drug solution, how long will it take for the concentration

in plasma to be lowered by 30 %, of the initial concentration? Use either of

the k-values determined in the previous subproblems.

(0.5 p)

d. Assume instead the drug is taken orally. Draw a sketch of the different

compartments you think are necessary for a model of the drug’s way through

the body as well as the measurements taken from plasma. See Tab. 2 below

for some important rate constants.

Table 2: Compartment data for problem 1

Parameter Description

kGB Kinetic coefficient Gut-to-blood [s−1]
kBL Kinetic coefficient blood-to-liver [s−1]
kLB Kinetic coefficient liver-to-blood [s−1]
kKB Kinetic coefficient kidneys-to-blood [s−1]
kBK Kinetic coefficient blood-to-kidneys [s−1]
ke,G Elimination constant, gut [s−1]
ke,B Elimination constant, blood [s−1]
ke,L Elimination constant, liver [s−1]
ke,K Elimination constant, kidneys [s−1]

(1 p)

Solution
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a. The process is y= dC/dt = −kC and we have values on y and C and want
to determine k. Let the regressor matrix be

Φ =











−C1
−C2
−C3
−C4











=











−0.9
−2.0
−3.3
−4.1











where Ci is the i-th value of [C] in Table 1 given in the problem text.
The least-squares solution is then

k̂ =
(

ΦTΦ
)−1

ΦT y = 0.1266 days−1

where y= (−0.12 −0.27 −0.33 −0.58 )T .

b. Set C(t) to be the concentration at time t. The initial condition and balance
equation of the system are the following

C(0) = C0 [units/volume]

The solution of the differential equation is

C(t) = C0e−kt

After 6 days, the concentration is halved. Therefore, if the half-life is stated

as t1/2 = 6, the concentration at t1/2 is given by

C(t1/2) =
C0

2
= C0e−kt1/2

Thus k is,

k = ln(2)
t1/2

= 0.6931
6

= 0.1155 days−1

The values of k are somewhat different. This could be due to poor measure-

ments of either the concentration and/or velocity or the half life.

c. When the concentration is lowered 30 % of the ititial concentration, 70 % of

the initial concentration is left. Set up the following equation do determine

the time it takes,
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0.7C0 = C0e−kt

This can be rewritten as follows,

ln

(

0.7C0

C0

)

= −kt

and further as,

t = −1
k
ln

(

0.7C0

C0

)

.

The minus sign swaps the numerator and denominator in the natural log-

arithm. Therefore, the equation can be written as,

t = 1
k

⋅ ln

(

C0

0.7 ⋅ C0

)

With k = 0.1155, t = 1
0.1155

ln(1/0.7) = 3.09. Hence, it takes approximately
3 days for the inital concentration to be lowered by 30 %.

d. In the figure below, one proposal of the sketch of the model is shown.

Gut Blood

Liver

Kidneys

ke,G

ke,K

ke,L

ke,B

kGB

kLB

kBL

kBK
kBK

Oral intake

Figure 1: Sketch of compartment model, one proposal.
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2.

a. Given the ion concentrations in Tab. 3 below, calculate the equilibrium po-

tentials of each of the three ions, Ion1, Ion2 and Ion3, at room temperature,

25○C, by the Nernst equation.

Table 3: Ion concentrations and valence charge

Ion Inner conc. [µM] External conc. [µM] Valence charge

Ion1 25 150 +2
Ion2 130 8.0 +1
Ion3 6.2 10 -1

Use the following values for the constants, R = 8.31447 [J/mol⋅K] - ther-
modynamic gas constant, F = 9.648534 ⋅ 104 [C/mol] - Faraday constant.

(1 p)

b. If you want the equilibrium potentials to be increased, given the concentra-

tions in Tab. 3 what should you do with the temperature for each specific

ion? If you instead are able to change the inner and/or external concen-
trations of the ions, how should you change them in order to increase the

equilibrium potential of each specific ion?

(1 p)

Solution

a. The Nernst equation for ion [i] is given by

Ei =
RT

zF
ln

(

Cout,i

Cin,i

)

where z - valence charge, Cout the ion concentration outside the cell, Cin
the ion concentration inside the cell, R - thermodynamic gas constant, F -

Faraday constant and T - temperature in Kelvin.

Given R = 8.31447 [J/mol⋅K], T = 273 + 25 [K] and F = 9.648534 ⋅ 104

[C/mol] then RT/F = 0.0257 [V] or 25.7 [mV].
Using the Nernst equation with the given values of the inner/external con-
centrations as well as the valence charge results in E1 = 23, E2 = −72 and
E3 = −12 [mV].

b. Ion1: The temperature should be increased. The external concentration

should be increased and/or the inner concentration decreased.

Ion2: The temperature should be decreased. The external concentration

should be increased and/or the inner concentration decreased.

Ion3: The temperature should be decreased. The external concentration

should be decreased and/or the inner concentration increased.
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3. Determine the transfer functions from U to Y in the following linear sys-

tems

a. System 1:

Y

G
2

G
1

G
3

G5

G

+ +

4

U

(1 p)

b. System 2:

G
2

G
1

G4

G

+

7

+

G
3

G
5

G
6

U Y

(1 p)

Solution

Y

G
2

G
1

G
3

G5

G

+ +

4

Z

U

a. From the block diagram we can conclude that

Z = (G1 + G2)(U + G4G3Z)

and

Y = G5G3Z

Thus

Y = (G1 + G2)G5G3
1− (G1 + G2)G4G3

U
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G
2

G
1

G4

G

+

7

U
+

Y

G
3

G
5

G
6

Z

b. From the block diagram we can conclude that

Z = G1U + G6G3G2Z

and

Y = G7U + (G4 + G5G3)G2Z

Thus

Y = (G7 +
(G4 + G5G3)G2G1
1− G6G3G2

)U

4. The following nonlinear differential equation describes some system,

z̈+ ż2z− z =
√
u

where u is the input signal and the output is given by y= z2 + u2.

a. Write the system on state-space form (1 p)

b. Determine the stationary points (1 p)

c. Linearize the system around the stationary point that represents u = 4.
(2 p)

Solution

a. With x1 = z and x2 = ż, the state space form of the system is the following,

ẋ1 = x2 (= f1(x,u))
ẋ2 = −x22x1 + x1 +

√
u (= f2(x,u))

y = x21 + u2 (= �(x,u))
(1)

b. In stationarity x02 = 0. This gives that x1+
√
u = 0 in stationarity. Therefore,

the stationary points are given by (x01, x02,u0) = (−√u0, 0,u0), u0 ≥ 0. In
stationarity the output signal is hence given by y0 = u0 + u20.
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c. u = u0 = 4 gives the stationary point (x01, x02,u0, y0) = (−2, 0, 4, 20). The
partial derivatives are

� f1
�x1

= 0, � f1
�x2

= 1, � f1
�u = 0,

� f2
�x1

= −x22 + 1,
� f2
�x2

= −2x2x1,
� f2
�u =

1

2
√
u

��
�x1

= 2x1,
��
�x2

= 0, ��
�u = 2u,

Use the following variable substitution

∆x = x − x0

∆u = u− u0

∆y = y− y0.
(2)

Then the linearized system is given by,

∆ ẋ =
[

0 1

1 0

]

∆x +
[

0
1
4

]

∆u

∆y = [−4 0 ] ∆x + 8∆u

(3)

5. An unstable process has the transfer function

Gp(s) =
4

s2 + 3s− 8
and is connected in negative feedback with a P controller Gr(s) = K .

a. For what values of K is the closed-loop system (asymptotically) stable?
(2 p)

b. Assume that the reference signal to the closed-loop system is a sinusoidal

signal r(t) = sin(2t), and consider the system after a long time when all
transients have disappeared. What is the output signal y(t) of the closed-
loop system when K = 3?

(1 p)
c. Instead assume the system is controlled by a state feedback controller. One

possible state-space representation of the transfer function is

ẋ =
(−3 4

2 0

)

x +
(

2

0

)

u

y = ( 0 1 ) x

Verify that this is a correct state-space representation.

(1 p)
d. Given the state-space representation above, determine the state-feedback

controller u = −Lx + r that assigns the poles of the closed-loop system,
from reference r to output y, to (−6,−8).

(2 p)
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e. The plots above, a and b, show the step response of the two closed-loop sys-

tems, with P regulator where K = 3 and with state-feedback controller with
poles in (−6,−8). Which plot shows which system? Motivate your answer.

(1 p)

Solution

a. The closed-loop transfer function is given by

Gcl(s) =
K 4
s2+3s−8

1+ K 4
s2+3s−8

= 4K

s2 + 3s− 8+ 4K

The poles of the system are thus given by:

p = −3
2
±

√

41

4
− 4K

The closed-loop system will be asymptotically stable when all the poles have

negative real part.

Therefore, the following must hold

√

41

4
− 4K < 3

2

4K > 41
4
− 9
4
= 8

K > 2

The closed-loop system will be asymptotically stable for K > 2.
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b. After the transient has decayed, the output signal is

y(t) = pGcl(2i)p sin(2t+ argGcl(2i))

where

Gcl(2i) =
4K

(2i)2 + 3 ⋅ 2i− 8+ 4K = 12

−4+ 6i− 8+ 12 =
12

6i

This gives

y(t) = 2 sin(2t− π /2)

c. If the state-space representation is given by,

ẋ = Ax + Bu
y = Cx

the transfer function of the system can be determined by,

G(s) = C(sI − A)−1B = (0 1 )
(

sI −
(−3 4

2 0

))−1(
2

0

)

= ( 0 1 )
(

s+ 3 −4
−2 s

)−1(
2

0

)

= ( 0 1 ) 1

(s+ 3)s− 8

(

s 4

2 s+ 3

)(

2

0

)

= 1

s2 + 3s− 8 (2 s+ 3 )
(

2

0

)

= 4

s2 + 3s− 8

This is the correct transfer function and therefore the state-space represen-

tation is valid.

d. We want to find a state feedback control law

u = −Lx + lr

such that the poles are located in −6 and −8. L =


 l1 l2





The desired characteristic polynomial is (s+ 6)(s+ 8) = s2+ 14s+ 48. With
feedback the characteristic polynomial is det(sI−A+BL) = s2+(3+2l1)s−
8+ 4l2.
Matching coefficients gives l1 = 11/2 and l2 = 14.

e. a: P regulator

b: State-feedback regulator

Motivate with static gain, rise time of the system or oscillative behavior.

6. A new ultra-slow insulin has been developed and the pharmacokinetics has

been suggested to follow a second-order compartment model according to

Fig. 3. Here, C1 and C2 represent two subcutaneous depots, B is the blood

plasma compartment, I is the amount of injected insulin and Ip is the

plasma insulin concentration. k12, k13, k23 are the rate coefficients between

the subcutaneous compartments and the blood plasma compartment and ke
is the elimination rate from plasma. All kinetics are assumed to be linear.

The blood plasma volume is VD.
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Figure 3: Insulin pharmacokinetics.

I

1

k12
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k23

ke

pI

C

a. Determine a state-space representation of the system with the insulin in-

jection I as input and Ip as the measured output. (2 p)

b. Determine the transfer function from input to output. (2 p)

c. Which of the two parameter sets in Tab. 4 would you consider to be most

appropriate for the ultra-slow insulin (taken once a day and intended to
provide an as even as possible basal level until the next injection)? VD has
been chosen to let the two parameter sets produce the same static gain.

Motivate your answer. (1 p)

Table 4: Suggested parameter sets for the insulin kinetics.

Parameter Set A Set B

k12 [min−1] 1.6 ⋅ 10−3 1.6 ⋅ 10−3

k13 [min−1] 4 ⋅ 10−2 4 ⋅ 10−4

k23 [min−1] 2.3 ⋅ 10−2 2.3 ⋅ 10−2

ke [min−1] 2 ⋅ 10−2 2 ⋅ 10−4

VD [ml] 50 5000

d. Sketch an impulse response for the first 1400 minutes of the system using

the parameter values you chose from Tab. 4. (1 p)

Solution

a. With x1 = QC1 , x2 = QC2 and x3 = QB , where Q stands for the amount of
insulin, the system becomes

ẋ =







−(k12 + k13) 0 0

k12 −k23 0

k13 k23 −ke






x +







1

0

0






I

Ip =
[

0 0 1/VD
]

x
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b. With

Z = (sI − A)−1

The transfer function

G(s) = C(sI − A)−1B

becomes

G(s) = CZB = Z31
VD

According to the ’collection of common results booklet’

Z31 =
1

det(sI − A)(−1)
3+1 detM13

where M13 is the matrix which is left after removing row 1 and column 3

from the sI − A matrix. Thus

G(s) = 1

VD

k12k23 + (s+ k23)k13
(s+ (k12 + k13))(s+ k23)(s+ ke)

c. The most appropriate parameter set is set B. This becomes apparent when

looking at the magnitude of the time constants. The system is dominated by

the slowest eigenvalue of the system matrix A, and for the first parameter

set this is in the magnitude of 60 minutes (1/k12). For parameter set B, the
slowest eigenvalue is 1/ke = 2 ⋅ 10−4, which corresponds to a time constant
of 5000 minutes. The first parameter set produces a fast response and cor-

responds to a rapid-acting insulin. With these parameters the insulin level

is well back to zero after 24 hours and could not be used to produce a steady

basal level from a single daily injection. The system according to the param-

eter set B on the other hand is very slow, and there is a significant effect

left after 24 hours. These aspects also become apparent when plotting the

impulse responses (see below).
d. To determine the impulse response we turn to the ’collection of common re-

sults booklet’ to find the inverse Laplace transform of the transfer function.

In this case it is number 27 and 30 that are relevant. With

a = k12 + k13
b = k23
c = ke

The response becomes:

f (t) = k23(k12 + k13)
VD

⋅
(b− c)e−at + (c− a)e−bt + (a− b)e−ct

(b− a)(c− a)(b− c)

− k13
VD

⋅
a(b− c)e−at + b(c− a)e−bt + c(a− b)e−ct

(b− a)(c− a)(b− c)
With the parameter values from parameter set B:

f (t) = −2.4 ⋅ 10−4e−at + 1.6 ⋅ 10−5e−bt + 2.24 ⋅ 10−4e−ct

Evaluate at a couple of points (e.g. at t=[100, 200, 400, 800, 1400]) and
sketch (see Fig. 4).
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Figure 4: Impulse response of the insulin pharmcokinetic model
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Good Luck!
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