
FRTF01 L8—Electrophysiology

Lecture

Electrophysiology in general
Recap: Linear Time Invariant systems (LTI)

Examples of 1 and 2-dimensional systems
Stability analysis

The need for non-linear description of systems
Analysis of stability of nonlinear systems and nonlinear
phenomena.
Examples in Electrophysiology:

the Van der Pol heartbeat-model
the Hodgkin and Huxley model of the action potential

Summary
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Definition of Electrophysiology

Merriam Webster’s definition of Electrophysiology:

Physiology that is concerned with the electrical aspects of
physiological phenomena.
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Systems with Electrical Properties

Can you give an example of a physiological system with electrical
properties?

The heart (cardiac cells), muscle cells, neurons, endocrine cells
(releasing hormones due to electrical stimuli).
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What is electricity?

Atom: protons (+), neutrons and electrons
(-).

Ions: charges are out of balance, either
negatively or positively charged.

Flow of electrons, or a negative charge, is
electricity.

p+n
e−

Example: The flow of ions over the cell membrane gives rise to an
electric potential.
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Electricity in the body

For what purpose is electricity used in the body?

To send information from point A to point B

Why aren’t we sending information with diffusing chemicals instead?

Speed. With electricity, nearly instantaneous response to control
messages
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How do we send information with electricity?

The natural resting potential of the cell membrane is negative due
to imbalance between ions

The cell is capable of depolarizing its membrane and creating an
action potential (either through external stimuli or by itself)

The electrical information is "jumping" from one cell to another
until it reaches its destination

Note: only excitable cells are able to create action potentials. In the
majority of cells the membrane potential stays relatively constant over
time.
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Reminder: Membrane potential

The membrane is selectively
permeable to different ions

Non-uniform distribution of ions
across membrane

→ Resting potential is negative

Membrane potential measured
as the difference in potential
inside and outside the cell

Ref: Purves et al., Neuroscience p. 76, 2004
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Reminder: Action potential

Voltage-gated ion
channels can describe
the change in
permeability of different
ions

Permeability dependent
on membrane potential
and time

Ref: Purves et al., Neuroscience p. 39, 2004

More on this later...
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Reminder: Muscle contraction

Action potential travels along motor neuron and terminates on a
muscle fiber.

Acetylcholine, ACh, is released into the synaptic cleft (the space
separating the axon terminal and the motor end plate) and
changes the permeability of the cells of the muscle fiber.

An action potential is created and propagates across the surface
of the sarcolemma. ACh is removed from synaptic cleft so the
effect is brief.
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Examples of non-linear systems and
phenomena

Nonlinear systems:

The electrical potential during a heartbeat

The action potential of a neuron

Nonlinear phenomena:

Hysteresis

Limit cycles
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Recap: 1D Linear time invariant system

LTI: differential equation can be written as a linear combination of the
variable and its derivatives. Time-invariant parameters.

Example: Homogeneous differential equation (right-hand side only
contains terms involving the unknown variable x)

dx
dt = −1

k
· x

With some initial condition x(0). Rate coefficient 1/k (k is a constant).

Solution: x(t) = x(0) · e−t/k

Physiological relevance: Describes a process of growth or decay, e.g
enzyme reaction.
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Recap: 1D Linear time invariant system

Example: Inhomogeneous differential equation (right-hand side
contains additional term which is independent of x)

dx
dt = 1

k
(−x+ u(t))

With some initial condition x(0) and input u(t). Rate coefficient 1/k (k
is a constant).

Solution: x(t) = x(0) · e−t/k + 1
k

∫ t
0e

−(t−τ)/ku(τ) dτ.

Physiological relevance: Could describe the spike rate x(t) in a
neuron when stimulated by a time-varying stimuli u(t) (current).
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Recap: 1D LTI - Stability analysis

State space representation

ẋ = −1
k
x+ 1

k
u

What are the eigenvalues of this system if k > 0? If k < 0?
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Example in MATLAB

% Parameter
k = 2;

% Input function
u = @(t) 5;

% Differential Equation
dxdt = @(t,x) 1/k∗(−x+u(t));

% Solution
init_value = 0;
[t X] = ode45(dxdt,[0 10],init_value);
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Example in MATLAB
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2D LTI system

Stability analysis of the equilibrium point:

Trajectory: the entire time course of the solution of the differential
equation from t = 0 to t =∞.

Stability of equilibrium point:

Asymptotically stable: all trajectories starting within a region
containing the equilibrium point decays to that point exponentially
as t→∞.

Unstable: at least one trajectory in the region leaves that region
permanently.

Stable/Neutrally stable: if nearby trajectories remain nearby as
t→∞ but do not approach asymptotically.
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Example in MATLAB: Spiral

(
ẋ1
ẋ2

)
=
(
−2 −16
4 −2

)(
x1
x2

)

Eigenvalues of the system:
−2 + 8i, −2− 8i
(complex conjugate pair)

% Differential Equation
dxdt = @(t,x) [−2 −16; 4 −2]∗x;

% Solution
init_value = [0.3 0.3];
[t X] = ode45(dxdt,[0 10],init_value);
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Phase plot and trajectory starting in [0.3 0.3]

Stability possibilities for spiral: Asymptotically stable or unstable.
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Example in MATLAB: Node

(
ẋ1
ẋ2

)
=
(
−2 4
0 −3

)(
x1
x2

)

Eigenvalues of the system: −2, −3

% Differential Equation
dxdt = @(t,x) [−2 4; 0 −3]∗x;

% Solution
init_value = [0.4 0.4];
[t X] = ode45(dxdt,[0 3],init_value);
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Phase plot and trajectory starting in [0.4 0.4]

Stability possibilities for node: Asymptotically stable or unstable.
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Example in MATLAB: Saddle Point

(
ẋ1
ẋ2

)
=
(

2 −1
0 −3

)(
x1
x2

)

Eigenvalues of the system: 2, −3

% Differential Equation
dxdt = @(t,x) [2 −1; 0 −3]∗x;

% Solution
init_value = [0.3 0.3];
[t X] = ode45(dxdt,[0 5],init_value);
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Phase plot and four trajectories

Stability possibilities for saddle point: Unstable.
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Example in MATLAB: Center

(
ẋ1
ẋ2

)
=
(

1 −2
5 −1

)(
x1
x2

)

Eigenvalues of the system: 3i, −3i

% Differential Equation
dxdt = @(t,x) [1 −2; 5 −1]∗x;

% Solution
init_value = [0.3 0.3];
[t X] = ode45(dxdt,[0 10],init_value);
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Phase plot and trajectory starting in [0.3 0.3]

Stability possibilities for center: Stable/Neutrally stable.
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Linearization and non-linear behavior

Approximate non-linear system around an equilibrium point by
Taylor series expansion

Good tool when analyzing behavior around equilibrium points

Does not captivate nonlinear behavior as limit cycles, hysteresis
and chaos [think back to HW1!].

Now to some examples of nonlinear systems in electrophysiology!

c©Carolina Lidström: FRTF01 L8—Electrophysiology



Electrophysiology of the Heart
The Heartbeat

Two types of cardiac cells: contractile cells (99%) and
specialized non-contractile muscle cells, pacemaker cells.

Pacemaker cells controls and coordinates the activities of the
contractile cells, without neural stimulation; automaticity.

Cellular connections enables rapid passage of action potentials
from cell to cell.

Pacemaker cells sets the pace at which the heart beats.

Contraction as in skeletal muscle cells described before.

Contraction of individual cardiac cells (first in atria then in the
ventricles).
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Refractory period

Ref: Martini and Bartholomew, Essentials of Anatomy and Physiology p.414, 2004.
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The Heartbeat Model

Van der Pol equation (1929), mathematical model of the heartbeat:

d2x

dt2
− ν(1− x2)dx

dt
+ x = 0

ν is a positive constant

describes nonlinear damping

Analysis of diff. eq:

Negative damping when |x| is small

Positive damping when |x| is large
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Analysis of the heartbeat model

Use y = ν ·
(
x− x3/3

)
− ẋ

to rewrite the system as
follows:

ẋ = ν

(
x− x3

3

)
− y

ẏ = x

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

x

y

ν = 0.1

 

 

Initial value: [0 0.1]

Initial value: [2 3]
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Analysis of the heartbeat model

When ν is large use y = x− x3/3− ẋ/ν to rewrite the system as
follows:

ẋ = ν

(
x− x3

3 − y
)

ẏ = x

ν
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Initial value: [0.5 0]

Initial value: [1 1]
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Analysis of the heartbeat model

ν is large: Hysteresis loop.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

ν = 10

 

 

Initial value: [0.5 0]

Initial value: [1 1]

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

x
 a

n
d

 y

Electric potential during heartbeat

 

 

x

y

Hysteresis: For two variables x and y, such that cyclic variations in x results in cyclic variations in y, then if the changes of y
lags behind those of x, we may say that there is hysteresis in the relation of x and y.
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EKG - Electrocardiography

EKG (or ECG) used to record the electrical activity of the heart

Need more detailed model to cover for example the delay

Ref: http://hmphysiology.blogspot.se/p/blog-page_25.html

c©Carolina Lidström: FRTF01 L8—Electrophysiology

http://hmphysiology.blogspot.se/p/blog-page_25.html


The Neuron

Soma, dendrites, axon, synapse.

Electrophysical recording intracellularly
with microelectrode→ detect action
potential

Microelectrode: instrument to measure
electric potential (by oscilloscope)

Single cell recording - receptive field of a
neuron

Ref: Purves et al, Neuroscience p.33, 2004
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The Neuron

Input: stimuli (heat, light),
synaptic contact.

Every nerve cell gets 1-1000
synapses from other nerve cells
- integrate information.

Inhibitory or excitatory neurons

Action potential is an all or none
phenomenon

Ref: Purves et al, Neuroscience p.33, 2004

The nervous system is highly complex and highly nonlinear.

Example: Threshold for producing spikes; weak stimulation has no effect yet
several weak stimuli together produce a dramatic spike response.
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How to model a neuron

Some examples of neuronal models are:

Device which is either on (1) or off (0).

Spike rate: varies continuously between 0 (postsynaptic potential
is below threshold) and some maximum saturated level (1000 Hz)
due to the refractory period.

Hodgkin and Huxley (1952) described the generation and
shape of an individual action potential as a function of the
underlying ionic currents.

Even more detailed models that incorporate the geometry and
spatial distribution of the neurons.
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Ionic movement produce electric potential

Active transporters: moves ions against their concentration gradient

Selective permeability (ion channels) allows only certain ions to cross
the membrane.

Working against each other, creating the resting potential.

Ref: Purves et al., Neuroscience p. 76, 2004
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Ionic movement produce elctrical signals

Electrochemical equilibrium:

1. Concentration gradient that causes K+ to move to compartment 2.

2. Opposing electrical gradient impedes further flow of K+.

Ref: Purves et al., Neuroscience p. 35, 2004
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The Nernst Equation

The Equilibrium potential for some ion is given by:

E = RT
zF ln

(
Cout
Cin

)

z - valence charge

Cout - the ion concentration outside (2) the cell

Cin - the ion concentration inside (1) the cell

R - thermodynamic gas constant, 8.31447 [J/mol ·K]

F - Faraday constant, 9.648534 · 104 [C/mol]

T - temperature in Kelvin.
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The Goldman Equation

The membrane potential when more than one permeant ion exist:

V = RT
F ln

(
PK [K]2 + PNa[Na]2 + PCl[Cl]2
PK [K]1 + PNa[Na]1 + PCl[Cl]1

)

Pi - permeability for ion [i], seems time and voltage dependent.

Ref: Purves et al., Neuroscience p. 39, 2004
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Permeabilities

Experiments on squid axon (large)→ initial insights on membrane
electrochemical behavior

Resting membrane more permeable to K+

Action potential: Increased permeability to Na+, then K+ permeability
increases (more than at rest), creates hyperpolarization.

Ref: Purves et al., Neuroscience p. 39, 2004
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The Voltage Clamp method

Hodgkin and Huxley used the voltage clamp technique, invented by Kenneth
Cole in the 1940s, to understand how the permeabilities depend on the
membrane potential and time.

Ref: Purves et al, Neuroscience p.48, 2004.

The measured current is the flow of ions across the membrane.
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The Voltage Clamp method

Ref: Purves et al, Neuroscience p.49, 2004.
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Mathematical model of Ion Channels

Ion channels are governed by Ohm’s law which states that

I = U

R

Or with the conductance g̃ = 1/R [nS] and the equilibrium potential E
[mV]:

I = g̃ · (V − E)

where V [mV] is the membrane potential. I is the ionic current over
the nerve cell membrane for a specific ion with equilibrium potential E.
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Determine the conductance

E determined through Nernst eq.

Voltage clamp experiment to get I at different V (separate ions)

Ref: Purves et al, Neuroscience p.55, 2004.
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The Hodgkin and Huxley Model

A.L. Hodgkin and A.F. Huxley,
A Quantitative Description of Membrane Current and its Application to
Conduction and Excitation in Nerve in Journal of Physiology, 1952.
Nobel Prize in Physiology or Medicine in 1963.

Cm

gNa gK gL

+

+

+ +
− − −

−

V

ENa EK EL

In

Out
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The Hodgkin and Huxley Model

The total membrane current can be written as

a

2R2θ2
d2V

dt2 = Cm
dV
dt + INa + IK + IL

where a is the radius of the fibre and R2 the specific resistance of the
axoplasm. The left hand side can be written as; a

2R2θ2
d2V
dt2 = Iext,

some external current input.
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The Hodgkin and Huxley Model

Remember I = g̃(V − E). In Hodgkin and Huxley

INa = g̃Na (V − ENa)
IK = g̃K (V − EK)
IL = g̃L (V − EL)

where the g̃ are functions of the membrane voltage V and the time t.
The ion [L] stands for the leakage, covering the behavior of all other
ions except [Na] and [K].

c©Carolina Lidström: FRTF01 L8—Electrophysiology



The Hodgkin and Huxley Model

The g̃-functions are defined as

g̃Na = gNam
3h

g̃K = gKn
4

g̃L = gL

where m, h and n are functions of the membrane voltage V and the
time t while gNa, gK and gL are constants.
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The Hodgkin and Huxley Model

The dynamics of the gating variables are:

dm
dt = αm (V ) (1−m)− βm (V )m

dh
dt = αh (V ) (1− h)− βh (V )h

dn
dt = αn (V ) (1− n)− βn (V )n

where the rate functions are, unit [1/ms]:

αm (V ) = 0.1 (V + 45) / (1− exp (− (V + 45) /10))
βm (V ) = 4exp (− (V + 70) /18)
αh (V ) = 0.07exp (− (V + 70) /20)
βh (V ) = 1/ (1 + exp (− (V + 40) /10))
αn (V ) = 0.01 (V + 60) / (1− exp (− (V + 60) /10))
βn (V ) = 0.125exp (− (V + 70) /80)
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The Hodgkin and Huxley Model

The total membrane current can then be written as

a

2R2θ2
d2V

dt2 = Cm
dV
dt + gNam

3h (V − ENa)

+ gKn
4 (V − EK) + gL (V − EL)

with parameters

Cm = 1[µF/cm2]
ENa = 45[mV] gNa = 120[mS/cm2]
EK = −82[mV] gK = 36[mS/cm2]
EL = −59.387[mV] gL = 0.3[mS/cm2]
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The Hodgkin and Huxley Model

m(t) - Na+ activation h(t) - Na+ de-activation n(t) - K+ activation
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The Hodgkin and Huxley Model
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The Hodgkin and Huxley Model

Pro: Detailed model of the action potential [HW4!]

Con: Computationally demanding to model several neurons
(network of neurons).

Exists several other models of the neuron, better when simulating
networks.
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Networks of Neurons

Ref: Purves et al, Neuroscience p.94, 2004

Feedback loop in
2-neuron network:

E

I
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Summary

LTI vs non-linear systems

Important to keep non-linear behavior in analysis

HH-model for action potential

Current research:

Electrophysiological studies of interneurons

Memory

Large models to describe disease
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