
Lecture 1

Course contents

Practical stuff - book - today pp. 71-101

Math background

Laplace transform AK 17

Transient and initial states AK 18

AK background - frequency curves AK 27-39
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Course content

Lec1 Basic system theory
Lec2 Argument variation principle, Nyquist theorem, Bode’s relations
Lec3 Stability, Robustness, Sensitivity Function

w7 Handin 1: Laplace transform and Frequency plots.
Lec 4 State coordinate change, zeros,

state feedback, observers
Lec5 Controllability and Observability, Kalman’s decomposition theorem
Lec6 Linear mappings and least squares problems

w10: HANDIN 2: State representations

Presentations HANDIN 1: TBD; no presentations HANDIN2
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Math Background - from Spanne’s ’blixtkurs’

∫
C f(z)dz, C : {z(t), t ∈ [a, b]},

∫ b
a f(z)dzdt dt,

important example:f(z) = 1
z−p , with C : {z(t) = p+ reit,

t ∈ [0, 2π]}
f(z) analytic, closed curve, Cauchy’s integral theorem:
different paths same integral, deformation of integration path∫
C
f(z)
z−pdz = f(p)2πi, Cauchy’s integral formula

{pk}n1 poles to f(z) inside C, then
∫
C =

∫
C1

+ · · ·+
∫
Cn

,
Resz=pk

f(z) = 1
2πi
∫
Ck
f(z)dz, residue calculus
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Laplace transform

Double vs single sided Laplace

Strip of definition. Different for different signals

Transfer functions. How do we handle different strips of definition?

Use one sided transforms + analytic continuation

Makes it possible to also analyse unstable causal systems
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Laplace transform - definition - convergence

Double-sided: Consider time functions f(t), −∞ < t <∞

F (s) = (LIIf)(s) =
∫ ∞
−∞

e−stf(t)dt

Convergens in strip Ω : α < Re s < β, F (s) analytic in Ω.

e−αtf(t)→ 0, t→∞, och e−βtf(t)→ 0, t→ −∞.

Ex α < 0 and β > 0 requires exponential convergence for both
t→∞ and t→ −∞.

Single-sided: Consider f(t), 0 ≤ t <∞

F (s) = (LIf)(s) =
∫ ∞

0
e−stf(t)dt

Converges in half plane Ω : α < Re s, F (s) analytic in Ω.

e−αtf(t)→ 0, t→∞, note α > 0 allows f(t)→∞, t→∞.
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Laplace transform - example

f(t) = e2t, t ≥ 0, F = LI{f}, F (s) = lim
T→∞

∫ T

0
e2te−stdt

F (s) = lim
T→∞

[ 1
2− se

(2−s)t
]T

0
= 1

2− s lim
T→∞

{
e(2−s)T − 1

}
lim
T→∞

e(2−s)T = 0, Re s > 2

So

F (s) = 1
s− 2 , Re s > 2

Extend domain of definition with analytic continuation to C− {s = 2},
only possible such function is F (s) = 1

s−2

Nice video about analytic continuation:
www.youtube.com/watch?v=sD0NjbwqlYw&t=3s

Bo Bernhardsson FRT130 Control Theory, Lecture 1

www.youtube.com/watch?v=sD0NjbwqlYw&t=3s


Transfer functions for causal systems

Weight function

y(t) =
∫ t

0
h(t− τ)u(τ)dτ =

∫ t

0
h(τ)u(t− τ)dτ

h(τ), 0 ≤ τ <∞

G(s) = (LIh)(s)

Y (s) = G(s)U(s)
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Laplace transform relations

LI
(
f ′
)

= sF (s)− f(0)

Proof:

LI
(
df

dt

)
=
∫ ∞

0
e−st

df

dt
dt (∗)

= s

∫ ∞
0

e−stf(t)dt+
[
e−stf(t)

]∞
t=0

=

= sF (s)− f(0)

(If both integrals converge and if e−stf(t)→ 0 as t→∞).
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Quiz

What is LI (f ′′)?

a s2F (s)− f(0)
b s2F (s)− f ′(0)
c s2F (s)− sf(0)− f ′(0)
d s2F (s)− sf ′(0)− f(0)
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Final Value Theorem - sketch

When s→ 0 in (∗) we get∫ ∞
0

df

dt
dt = lim

s→0
sF (s)− f(0)

If the limit value lim
t→∞

f(t) exists, then this can be written

lim
t→∞

f(t)− f(0) = lim
s→0

sF (s)− f(0)

which is the final value theorem
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Initial Value Theorem - sketch

If we instead let s→∞ we have

lim
s→∞

∫ ∞
0

e−st
df

dt
dt = lim

s→∞
sF (s)− f(0)

This motivates that we should have

0 = lim
s→0+

sF (s)− f(0)

which is the initial value theorem

Both the final and initial value theorems need conditions to guarantee
that the calculations we just did are correct.
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Initial and Final-value theorems - rational F

Initial Value Theorem Assume the Laplace transform F (s) is rational
and strictly proper. Then

lim
t→+0

f(t) = lim
s→+∞

sF (s)

Final Value Theorem. Assume that F (s) is rational and all poles to
sF (s) have negativ real part, then

lim
t→+∞

f(t) = lim
s→+0

sF (s)

Sketch for rational F (s): The theorem is true if F (s) = (s− p)k
(check). Write F as a sum of such terms.
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Proof slightly more general final value theorem
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Transients and initial conditions

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du

Laplace transform gives

sX(s)− x0 = AX(s) +BU(s)
X(s) = (sI −A)−1(BU(s) + x0)

Y = [C(sI −A)−1B +D]︸ ︷︷ ︸
G(s)

U(s) + C(sI −A)−1x0
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Example: Sinusoidal input signal

ẋ = −x+ u x(0) = x0 u(t) = sin t

gives after Laplace transform

sX(s)− x(0) = −X(s) + U(s), U(s) = 1
s2 + 1

Solving for X gives

X(s) = 1
s+ 1(U(s) + x0) = 1

s+ 1

( 1
s2 + 1 + x0

)
= 0.5− 0.5s

s2 + 1 + 0.5 + x0
s+ 1

Invers transformation (table) gives

x(t) = 1
2 sin t− 1

2 cos t+ (x0 + 1
2)e−t
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Laplace transform in Matlab (or Maple)

>> s=tf(’s’)
>> G = (1-s)/(sˆ2+s+1)
G =

-s + 1
-----------
sˆ2 + s + 1

>> step(G)
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Laplace transform in Matlab (or Maple)

>> clear s
>> syms s t x0

>> ilaplace((1-s)/(sˆ2+s+1))
ans =
-exp(-t/2)*(cos((3ˆ(1/2)*t)/2) - 3ˆ(1/2)*sin((3ˆ(1/2)*t)/2))

>> ilaplace((0.5-0.5*s)/(sˆ2+1) + (0.5+x0)/(s+1))
ans =
sin(t)/2 - cos(t)/2 + exp(-t)*(x0 + 1/2)

>> latex(ans)

sin(t)
2 − cos(t)

2 + e−t
(
x0 + 1

2

)
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A sliding block - where will it stop?

A block is sliding according to

ÿ(t) + cẏ(t) = 0 (1)

with start in position y(0) = a and speed ẏ(0) = b. Determine
limt→∞ y(t).
Laplace transform of (1) gives

s2Y (s)− sy(0)− ẏ(0) + c[sY (s)− y(0)] = 0

Y (s) = sy(0) + ẏ(0) + cy(0)
s2 + cs

Final value theorem gives

lim
t→∞

y(t) = lim
s→+0

sY (s) = lim
s→+0

sy(0) + ẏ(0) + cy(0)
s+ c

= ẏ(0) + cy(0)
c

= b

c
+ a

What did we miss? The condition c > 0.
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Roots and stability

Want to solve the differential equation

yn + a1y
n−1 + . . .+ an−1y

′ + any = 0

Characteristic polynomial

a(s) = sn + a1s
n−1 + . . .+ an−1s+ an = 0

If a(α) = 0 then y(t) = Ceαt is a solution to the differential equation

The general solution is

y(t) =
∑
k

Ck(t)eαkt

where Ck(t) is a polynomial of degree m− 1 if αk is a root of mult. m

y(t)→ 0 if all roots are in the open left half plane
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Eigenvalues - stability

G(s) = C(sI −A)−1B = 1
det(sI −A)Cadj(sI −A)B

Eigenvalues: det(sI −A) = 0.

[
θ̇1
θ̇2

]
= v

[
−2 0
1 −1

] [
θ1
θ2

]
+ v

[
2
0

]
u

How do the eigenvalues depend on speed v?

For what v are the eigenvalues in the open left half plane ?
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Frequency analysis

Frequency curves
u(t) = sinωt, y(t) = A(ω) sin(ωt+ ϕ(ω))
A(ω) = |G(iω)|, ϕ(ω) = argG(iω)
Representation of G(s) and G(iω)
Nyquist diagram - complex number G(iω)
Bode diagram – |G(iω)| and argG(iω)
G = G1G2G3G4 . . .
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Course content

Lec1 Basic system theory
Lec2 Argument variation principle, Nyquist theorem, Bode’s relations
Lec3 Stability, Robustness, Sensitivity Function

w7 Handin 1: Laplace transform and Frequency plots.
Lec 4 State coordinate change, zeros,

state feedback, observers
Lec5 Controllability and Observability, Kalman’s decomposition theorem
Lec6 Linear mappings and least squares problems

w10: HANDIN 2: State representations

Presentations HANDIN 1: TBD; no presentations HANDIN2
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