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Least squares problem, under-determined

Measures of controllability

Least squares problem, over-determined

Measures of observability

Example: Function approximation
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Least squares problems I

Given linear operator L and vector v, minimize |u| under the constraint

Lu = v.

Lu
=

v

û

0

The operator L is “short and fat”: More variables than equations.

Many solutions, want the shortest one.

Notice the right angle in the picture
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Linear operators and Hilbert spaces

If L is a matrix and u and v are vectors in a finite-dimensional space

this is an easy matrix problem: The solution is

û = LT (LLT )−1v

We want to generalize to a situation were we optimize over e.g. "all

possible control signals u([0, T ])".
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Linear operators and Hilbert spaces

Useful theory: Linear operators in infinite-dimensional vector spaces,

scalar product 〈x, y〉, "orthogonal" means that 〈x, y〉 = 0.

This theory is very useful, not only in control and signal processing.

Dont have time to present the mathematical background and detail,

only some intuition and the resulting formulas for the optimal solution.

For more detail, see Lecture 6 in the PhD course Linear System theory

www.control.lth.se/Education/DoctorateProgram/linear-systems.html
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Linear operators and adjoints

Given a (continuous) linear operator L from a Hilbert space to another,

the adjoint L∗ is an operator defined by the relation

〈Lu, v〉 = 〈u, L∗v〉

for all u, v.

This generalizes the matrix transpose in the finite dimensional case
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Least squares problem I

Minimize |u| under the constraintLu = v.

Lu
=

v

û

0

Solution: û must satisfy Lû = v and

0 = 〈û, û − u〉 for all u with Lu = v

If LL∗ is invertible then the (in this case unique) solution can be written

û = L∗(LL∗)−1v

Application: Reach wanted state x(T ) with minimal control signal
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Measure of controllability

Lu =

∫ t1

0
eA(t1−t)Bu(t)dt

L∗x(t) =
[
eA(t1−t)B

]T
x (easy to check that 〈x, Lu〉 = 〈L∗x, u〉)

W := LL∗ =

∫ t1

0
eA(t1−t)BBT eAT (t1−t)dt =

∫ t1

0
eAτ BBT eAT τ dτ

The problem of controlling the system ẋ = Ax + Bu from x(0) = 0 to

x(t1) = x1 with minimal cost ‖u‖2 =
∫ t1

0 u2dt hence has the solution

û(t) = L∗(LL∗)−1x1 = BT eAT (t1−t)W −1x1

and the minimal squared cost ‖û‖2 equals

xT
1 (LL∗)−1x1 = xT

1 W −1x1.
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Controllability Gramian

The matrix

W =

∫ t1

0
eAτ BBT eAT τ dτ

is called Gramian. The cost of reaching the state x1 is xT
1 W −1x1.

The smallest eigenvalue of W is a measure of controllability, since

1/λmin(W ) is the control signal (squared) norm that is needed to

reach all states having norm one.

For the case t1 = ∞ and A stable, one can calculate W from the

Lyapunov equation (W=lyap(A,B*B’) in matlab)

W AT + AW + BBT = 0.

Automatic Control LTH, 2014 FRT130 Control Theory, Lecture 6



Example: Gramian for trailer

A =

[
−1 0
1 −1

]
, B =

[
1
0

]
, eAt =

[
e−t 0
te−t e−t

]

W =

∫ t1

0

[
e−t

te−t

] [
e−t

te−t

]T

dt

=
1

4

[
2 − 2e−2t1 1 − (2t1 + 1)e−2t1

1 − (2t1 + 1)e−2t1 1 − (2t2
1 + 2t1 + 1)e−2t1

]

For t1 = ∞ we get

W =

[
1/2 1/4
1/4 1/4

]

with eigenvalues 0.65 and 0.096.
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Least squares problem II

Given L and v, minimize |Lu − v| with respect to u.

L is “tall and thin”: More equations than variables

Lu

Lû

0 v

Notice the right angle !
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Least squares problems II

Minimize |Lu − v| with respect to u.

Lu

Lû

0 v

Solution: û must satisfy

0 = 〈Lx, Lû − v〉 for all x

Equivalently

L∗Lû = L∗v
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Observability





dx

dt
= Ax, x(0) = x0

y = Cx

The system is observable if x0 uniquely can be determined from y[0,t1].

y(t) = CeAtx0 = (Mx0)(t), y = Mx0

M : R
n → L

p
2[0, t1]

The operator M , maps x0 to y, i.e. from an n-dimensional space to a

space of functions
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Measure of observability

If y = Mx0 + e, i.e. if true value disturbed by measurement noise e,

then the equations can typically not be solved exactly.

Least squares solution:

min
x0

||y − Mx0||

W = M∗M =

∫ t1

0
eAT tCT CeAtdt

x̂0 = (M∗M)−1M∗y = W −1
∫ t1

0
eAT (t1−t)CT y(t)dt

If Mx̂0 = Mx0 + e then the estimation error x̃0 = x0 − x̂0 satisfies

x̃T
0 M∗Mx̃0 = ‖e‖2

The smallest eigenvalue to the observability gramian W = M∗M
gives a measure of observability. If it is close to zero, then small e can

give large x̃0 (bad).
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Other example: Function approximation

Choose the real numbers u0, u1, u2 to minimize
∫

1

0
|et − u0 − u1t − u2t2|2dt

Solution:

u =




u0

u1

u2


 , Lu =

[
1 t t2

]



u0

u1

u2


 , v(t) = et

L∗v =

∫
1

0




1
t
t2


 etdt =




e − 1
1

e − 2




L∗L =

∫
1

0




1
t
t2


 [

1 t t2
]

dt =




1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5




û = (L∗L)−1L∗v =




1.013
0.851
0.839
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Example: Funcion approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
exp(t) (blue), L2-approx (red), Taylor-approx (black)

Notice that the least squares approximation (red)

et ≈ 1.013 + 0.851t + 0.839t2

is much better than the Taylor approximation (black)

et ≈ 1 + t + 0.5t2
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