
Department of
AUTOMATIC CONTROL

Exam in Systems Engineering/Process Control
2017-06-02

Points and grading
All answers must include a clear motivation. Answers may be given in English or Swedish.
The total number of points is 20 for Systems Engineering and 25 for Process Control. The
maximum number of points is specified for each subproblem. Preliminary grading scales:

Systems Engineering:

Grade 3: 10 points
4: 14 points
5: 17 points

Process control:

Grade 3: 12 points
4: 17 points
5: 21 points

Accepted aid
Authorized Formelsamling i reglerteknik / Collection of Formulae. Standard mathematical
tables like TEFYMA. Pocket calculator.

Results
The solutions will be posted on the course home page, and the results will be transferred to
LADOK. Date and location for display of the corrected exams will be posted on the course
home page.
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1. Figure 1 shows step responses of six systems. Match them to the following six transfer
functions. (3 p)

G1 =
10

s+10
e−s G2 =

4
s2 +1.2s+4

G3 =
1

s(s+1)
G4 =

4
s2 +2.4s+4

G5 =
4

s2−3.6s+4
G6 =

1
s+1
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Figure 1 Step responses for the six transfer functions in Problem 1
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Figure 2 Block diagram for Problem 2 with two block components.

Solution

1. S1 = G6. first order system with static gain 1.

2. S2 = G5. Unstable system.

3. S3 = G3. Integrator

4. S4 = G1. First order system with a time delay.

5. S5 = G4. Second order system with high damping.

6. S6 = G2. Second order system with low damping.

2. Compute the transfer function from v to w for the block diagram in Figure 2.
(2 p)

Solution
Breaking the loop at B gives

B = Q(P(B+A)+A) = QPB+Q(P+1)A
⇔ B(1−QP) = Q(P+1)A

⇔ B =
Q(P+1)
1−QP

A

The transfer function from A to B is hence

Q(P+1)
1−QP

3. Figure 3 depicts some characteristics of three different second order systems, all of
the form

G(s) =
ω2

0

s2 +2ζ ω0s+ω2
0

e−sL

but with different parameters ζ , ω0, and L. Combine each Nyquist plot (i)-(iii), with
a bode diagram (A)-(C), a step response (1)-(3), and a singularity diagram (I)-(III) in
Figure 3 with clear motivations.

(4 p)

Solution
The correct combinations are

• (i)↔ (C)↔ (2)↔ (I)

• (ii)↔ (B)↔ (3)↔ (II)

• (iii)↔ (A)↔ (1)↔ (III)
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Figure 3 Characteristics of the three second order transfer functions in Problem 3.

4. Consider the system

ẋ =
−1 0

0 −2

x+
 1
−1

u

y =
1 1

x

a. Determine the transfer function from u to y. (1.5 p)

b. Determine the poles of the system. Is the system unstable, marginally stable or asymp-
totically stable? (1.5 p)

Solution

a. The transfer function from u to y is given by G(s) =C(sI−A)−1B.

G(s) =
1 1

s+1 0
0 s+2

−1 1
−1

=
1

(s+1)(s+2)
=

1
s2 +3s+2
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b. The poles of the system are the eigenvalues of the system matrix A, which are also the
zeros of the characteristic function. Solving (s+1)(s+2) = 0 shows that the system
has one pole in −1 and one pole in −2. The system is asymptotically stable since the
real parts of all its poles are strictly negative.

5. Consider a system with an input signal u(t) and a measurement signal y(t). Let

G(s) =
Y (s)
U(s)

=
1

(s+1)2

be the transfer function from the input U(s) =L {u(t)} to the output Y (s) =L {y(t)}.
Using the final value theorem,

a. Compute the output y(t) as t→ ∞ if the input is a unit step. (1 p)

b. Compute the output y(t) as t→ ∞ if the input is a unit ramp. (1 p)

c. Compute the difference d(t) = u(t)− y(t) as t→ ∞ if the input is a unit ramp. (1 p)

Solution
According to the final value theorem,

lim
t→∞

y(t) = lim
s→0

sY (s) (1)

if sY (s) is asymptotically stable.

a. As the Laplace transform of a step u(t) = θ(t) is U(s) = s−1, consequently

sY (s) = sG(s)U(s) = s
1

(s+1)2
1
s
=

1
(s+1)2 (2)

We have two poles in −1, is therefore asymptotically stable and we compute

y(∞) = lim
s→0

sY (s) = lim
s→0

1
(s+1)2 = 1 (3)

b. If instead the input is a unit ramp, the L -transform of u(t) = tθ(t) is U(s) = s−2,

sY (s) = sG(s)U(s) = s
1

(s+1)2
1
s2 =

1
s(s+1)2 (4)

We now have two poles in −1 an additional pole in s = 0, the system is marginally
stable due to the extra integrator and the final value theorem does not apply.

c. The difference may be written D(s) =U(s)−Y (s) in the Laplace domain, and we now
investigate the stability of

sD(s) = s(U(s)−Y (s)) = s(1−G(s))U(s) =
(

1− 1
(s+1)2

)1
s
=

s2 +2s
(s+1)2s

=
s+2

(s+1)2

(5)
Due to the pole-zero cancellation, we again have two poles in −1 and asymptotic
stability. Again applying the final value theorem

d(∞) = lim
s→0

sD(s) = lim
s→0

s+2
(s+1)2 = 2 (6)

While we in b) could not say anything about the final value of y(t) when using a ramp
as an input, it is now clear that difference between the input ramp and response will
be a constant 2 as t→ ∞.
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6. The ideal pendulum of length l [m] in Figure 4 is governed by the nonlinear dynamical
state equations

ẋ1 = x2

ẋ2 =−(g/l)sin(x1)

where x1 is the angle, x2 is the angular velocity, and g [m/s2] denotes the constant of
gravity.

a. Find all stationary points, x0 = [x0
1, x0

2]
T , of the system. (1 p)

b. Give a physical explanation of the location of the stationary points. (1 p)

c. Linearize the system around an arbitrary stationary point x0 = [x0
1, x0

2]
T by introducing

the variables ∆x1 = x1− x0
1, ∆x2 = x2− x0

2. (1 p)

d. Decide for each linearized system if it is stable, marginally stable, or unstable. Give a
physical explanation of the result. (2 p)

Solution

a. Consider the dynamics on the form ẋ = f(x), with x = [x1,x2]
T . In stationarity, ẋ = 0,

and solving f(x) = 0,{
0 = x2

0 =−(g/l)sin(x1)
⇔

{
x1 = arcsin(0) = nπ, n ∈ Z
x2 = 0

the equilibrium points of the system are found in [x0
1,x

0
2]

T = [nπ,0]T , n ∈ Z.

b. The angular velocity x2 must be zero in stationarity. The (angular) position of the
pendulum x1 is either upward/inverted (odd n) or downward (even n).

c. The linearized dynamics are given by a Taylor expansion of f around the linearization
point, resulting in the LTI system

∆̇x =
∂ f(x)

∂x

∣∣∣
x0

∆x =

[
0 1

−(g/l)cos(x0
1) 0

]
∆x , A∆x

Figure 4 Pendulum in Problem 6.
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d. The eigenvalues of the linearized system are given by the roots of the characteristic
equation

det(Iλ −A) = λ
2 +(g/l)cos(x0

1) = 0⇔ λ1,2 =±
√
−g

l
cos(x0

1)

Plugging in the linearization point, this may equivalently be written

λ1,2 =±
√
−g

l
cos(nπ) =±

√
−g

l
(−1)n

If n is even, the expression under the square root is negative, and the eigenvalues are
on the imaginary axis and the system is marginally stable. If n is odd, the expression
under the square root is positive, and the eigenvalues are on the real axis on either side
of the origin. Therefore, the system is unstable.
This is reasonable since in the inverted position (odd n), the pendulum is likely to be
repelled from the stationary points. In the downward position (even n), the pendulum
oscillates back and forth.

7. Only for Process Control: Consider the multivariable system

G(s) =

(
2e−s

s+4
e−s

(s+1)(s+5)
1

2s+5
3

s+5

)

The system should be controlled using two PID controllers.

a. Calculate the relative gain array, RGA, for the system. (1 p)

b. Determine how should the inputs and outputs be paired? Comment on the interaction.
(1 p)

c. Find a decoupling matrix that decouples the system dynamics in stationarity and gives
the corresponding decoupled system static gains of one. Is the decoupler realizable?

(1 p)

Solution

a. The stationary gain matrix is given by

G(0) =
[

0.5 0.2
0.2 0.6

]
.

From this we can calculate the RGA as

RGA = G(0).∗ (G(0)−1)T =

[
1.15 −0.15
−0.15 1.15

]
.

b. The inputs and outputs should be paired so that the corresponding relative gains are
positive and as close to one as possible. Hence, we should control the first output
using the first control signal and the second output using the second control signal.
The coupling is weak, since the RGA is close to identity matrix.
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c. That the system is decoupled in stationarity and has static gains of one if D is obtained
from the following [

1 0
0 1

]
= G(0)D.

From this we see that the static decouples should be the inverse of G(0).

D =

[
2.31 −0.77
−0.77 1.92

]
.

Since the decoupler is static it is obviously realizable.

8. Only for Process Control: Consider a first order system

ẏ(t) =−ay(t)+bu(t)

with a > 0 and b > 0.

a. Discretize the system using forward Euler with sampling time h. State the resulting
difference equation. (0.5 p)

b. Find the range of h > 0, possibly as a function of a and b, such that the discretized
system in a. is stable. (0.5 p)

c. Discretize the system using backward Euler with sampling time h. State the resulting
difference equation. (0.5 p)

d. Find the range of h > 0, possibly as a function of a and b, such that the discretized
system in c. is stable. (0.5 p)

Solution

a. Forward Euler gives

y(kh+h)− y(kh)
h

=−ay(kh)+bu(kh).

Rearranging gives

y(kh+h) = (1−ah)y(kh)+bhu(kh).

b. The difference equation is stable if |1−ah|< 1, which implies

0 < h < 2/a.

c. Backward Euler gives

y(kh)− y(kh−h)
h

=−ay(kh)+bu(kh).

Rearranging gives

y(kh) =
1

1+ah
y(kh−h)+bhu(kh).

d. The difference equation is stable if | 1
1+ah |< 1, which implies h > 0.

8


