
Solutions to exam in Systems Engineering and Process Control 2016-05-31

1. G1−E First order system, time constant 5s, no time delay.
G2−N/A First order system, time constant 50s.
G3−D Second order system, fully damped, time delay, static gain 1.
G4−A Same as G3 but with static gain 5.
G5−F Unstable.
G6−C Second order system, oscillative, static gain 1.
G7−N/A The same as G6 but static gain 5.
G8−B First order system, time constant 0.2s, time delay 5s, static gain 1.
G9−N/A Second order system,fully damped, no time delay.

2.

a. Introducing the states x1 = y and x2 = ẏ the system equations can be written as(
ẋ1

ẋ2

)
=

(
0 1
−γ/α −β/α

)(
x1

x2

)
+

(
0

δ/α

)
u

y = (1 0)
(

x1

x2

)
.

b. Laplace transforming the expression gives

αs2Y +β sY + γY = δU ⇒

Y =
δ

αs2 +β s+ γ
U

c. To get an asymptotically stable system we need all coefficients of the characteristic
polynomial to be of the same sign. Rewriting the system to

Y =

δ

α

s2 +
β

α
s+

γ

α

U

it is easily seen that the restrictions are that β/α > 0 and γ/α > 0.

3.

a. The static gain is P(0)≈ 2.

b. The amplitude margin is ≈ 2.

c. To determine the steady state error e(∞) for a reference change, we need to know how
e depends on r. The block diagram gives us:

E(s) =
1

1+KP(s)
R(s).

Therefore, the stationary error e(∞) is given by

e(∞) = lim
s→0

sE(s) = lim
s→0

s
1

1+KP(s)
1
s
=

1
1+KP(0)

=
1

1+2K
.
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d. A stationary error |e(∞)| less than 0.1 then gives∣∣∣∣ 1
1+2K

∣∣∣∣< 0.1

with solutions K > 4.5 and k <−5.5. But as the closed loop system becomes unstable
for K > 2 (the amplitude margin is≈ 2), the requirement on stability and the stationary
error is impossible to fulfill for K > 0.

4.

a. The stationary points are those that have zero derivative, i.e., the points that satisfy

0 = x1(1− x1)+ x2 (= f1(x1,x2))

0 = x2(2− x1) (= f2(x1,x2))

From the second equation, we get that x2 = 0 or x1 = 2. If x2 = 0, the first equation
gives that x1 = 0 or x1 = 1. If x1 = 2, the first equation gives that x2 = 2. Therefore,
the stationary points are (0,0),(1,0),(2,2).

b. The only stationary point with x1
0 6= 0 and x2

0 6= 0 is the point (2,2). So, we linearize
around this. The partial derivatives are

∂ f1

∂x1
= 1−2x1,

∂ f1

∂x2
= 1

∂ f2

∂x1
=−x2,

∂ f2

∂x2
= 2− x1.

Introduce the new variables

∆x1 = x1− x0
1

∆x2 = x2− x0
2.

where x0
1 = 2 and x0

2 = 2, and let ∆x = [∆x1 ∆x2]
T . The linearized system becomes

∆̇x =
[−3 1
−2 0

]
∆x.

c. Let A be the linearized dynamics matrix from subproblem b., i.e.,

A =

[−3 1
−2 0

]
.

The eigenvalues of the dynamics matrix A are given by the λ that satisfy

det(λ I−A) = 0.

That is

(λ +3)λ +2 = λ
2 +3λ +2 = 0.

Since all coefficients are positive, the eigenvalues of the A matrix are in the left half-
plane, and the linearized system is asymptotically stable.
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5.

a. The output signal y is given by

y = Dd +PFd +PC(r− y−n)⇒

y =
1

1+PC
(PCr+(D+PF)d−PCn).

This gives that

Gr→y =
PC

1+PC

Gd→y =
D+PF
1+PC

Gn→y =
−PC

1+PC

b. No it is not possible, since the transfer functions from the reference signal and from
the noise are the same (only differs in the sign). So, if you would want to remove the
effect of the noise (i.e. have Gn→y = 0) the transfer function from the reference to the
output would also be zero. (You could, however, design a controller that has perfect
following of references in steady state Gr→y(0) = 1 that has a very low gain for higher
frequencies and hence attenuates noise of these frequencies well.)

c. The impact from d will disappear if Gd→y = 0, i.e., if D+PF = 0. Hence, we can
design our feedforward controller as

F(s) =−D(s)
P(s)

=
s+1

s2 +3s+4
.

6.

a. The zero is directly identified as −2. The poles are roots to the denominator, i.e., s
that solve s2 +2s+5 = 0:

s =−1±
√

1−5 =−1±2i.

Since all poles are strictly in the left half-plane, the process is asymptotically stable.

b. The open loop transfer function Go(s) = KGP(s) is

Go(s) =
K(s+2)

s2 +2s+5
=

Q
P

The characteristic equation is given by

Q+P = s2 +(2+K)s+2K +5

The desired characteristic equation is

(s+3)(s+7) = s2 +10s+21

Identifying coefficients leads to the equation system

10 = 2+K

21 = 2K +5

with solution K = 8, that holds for both equations. It is thus possible to place the poles
at −3 and −7 using a proportional controller of gain K = 8.
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c. No, a P-controller is not sufficient since it is not possible to place the poles wherever
you want to. The pole placement leads to an equation system with two equations and
one variable K. This is in general not solvable.

7.

a. 
y1

y2

y3

y4

=


P1α 0

0 P2β

P3P1α P3(1−β )

P4(1−α) P4P2β


(

u1

u2

)

b. (
y1

y2

)
=

(
P1α 0

0 P2β

)(
u1

u2

)
As can be seen this subsystem is decoupled and you should pair u1 to y1 and u2 to y2.

c. This subsystem is (
y3

y4

)
=

(
P3P1α P3(1−β )

P4(1−α) P4P2β

)(
u1

u2

)
.

The transfer function matrix in steady state with the values given will become

G(0) =
(

1/4 3/4
3/4 1/4

)
.

This gives the RGA matrix

Λ = G(0).∗ (G(0))−T =

(
1/4 3/4
3/4 1/4

)
.∗ 1

1/16−9/16

(
1/4 −3/4
−3/4 1/4

)
=−2

(
1/16 −9/16
−9/16 1/16

)
=

(−1/8 9/8
9/8 −1/8

) .

From this RGA matrix it is seen that you should pair y3 with u2 and y4 with u1 since
you want elements close to 1.

8.

a. The closed loop system is written as

Y (s) =
25

s+25
R(s)

or rearranged as

(s+25)Y (s) = 25R(s).

Inverse Laplace transform then yields

dy(t)
dt

+25y(t) = 25r(t)
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and a forward approximation of the derivative with sample period h = 0.1 then gives

y(0.1k+0.1)− y(0.1k)
0.1

+25y(0.1k) = 25r(0.1k)

or arranged as a difference equation

y(0.1k+0.1) =−1.5y(0.1k)+2.5r(0.1k)

b. The discretization in a is unstable since the coefficient in front of the previous y-value
has an absolute value greater than 1. The continuous time system is stable. Hence, the
step-responses do not agree. This can be solved by reducing the sampling time or by
using another approximation method instead, such as the backward difference.
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