
Department of

AUTOMATIC CONTROL

Exam in FRT110 Systems Engineering

and FRTN25 Process Control

June 5, 2015, 14:00–19:00

Points and grades

All answers must include a clear motivation. Answers may be given in English

or Swedish. The total number of points is 20 for Systems Engineering and 25 for

Process Control. The maximum number of points is specified for each subprob-

lem. Preliminary grading scales:

Systems Engineering:

Grade 3: 10 points

4: 14 points

5: 17 points

Process Control:

Grade 3: 12 points

4: 17 points

5: 21 points

Acceptable Aid

Authorized Formelsamling i reglerteknik / Collection of Formulae. Standard math-
ematical tables like TEFYMA. Pocket calculator.

Results

The solutions are posted on the course home page, and the results will be trans-

ferred to LADOK. Date and location for display of the corrected exams will be

posted on the course home page.
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Figure 1 The level control system in Problem 1

Solutions to Exam in Systems Engineering/Process Control 2015-06-05

1. Figure 1 shows a P/I diagram for level control of a buffer tank. The process
has one control signal, u, and three measurement signals, y1, y2, and y3.

a. Two of the measurement signals are used for feedback—which? One of the

measurement signals is used for feedforward—which? Explain! (1 p)

b. The current solution is deemed too expensive by your boss, and you have

been ordered to remove two of the sensors (transmitters). Which sensors
could you remove and still have a working system? Explain! (1 p)

Solution

a. y1 and y2 are used for feedback control in a cascaded structure. The master

level controller (LIC) calculates the flow setpoint for the slave flow con-
troller (FIC). y3 measures the outflow, which can be seen as a disturbance.
The level controller uses feedforward from this signal to compensate for the

disturbance.

b. If y2 is removed, there will be no feedback from the tank level, which is

the quantity we are trying to control. Hence, y2 should not be removed. Re-

moving y1 (and FIC) would disable the inner loop of the cascade controller,
and removing y3 would disable the feedforward. Both of these actions would

decrease the control performance but still leave a working system.

2. Consider the nonlinear dynamical system

ẋ1 = −8x32 +
√
u

ẋ2 = x1
y = x22

where x1 and x2 are the state variables, u is the input and y is the output.
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a. Determine the stationary state (x01, x02) and the stationary output y0, when
the input signal is constant, u0 = 1. Then linearize the system around this
stationary point. (2 p)

b. Determine the transfer function G(s) that describes the relation between
the input and the output of the linearized system. Determine the poles of

the system and comment on its stability properties. (2 p)

Solution

a. In stationarity we have ẋ = 0, which yields 0 = −8(x02)3 +
√
1 Q x02 = 0.5.

Further, x01 = 0. Finally, we have y0 = (x02)2 = 0.25. Let

f1(x1, x2,u) = −8x32 +
√
u

f2(x1, x2,u) = x1
�(x1, x2,u) = x22

The partial derivatives are

� f1
�x1

= 0 � f1
�x2

= −24x22
� f1
�u =

1

2
√
u

� f2
�x1

= 1 � f2
�x2

= 0 � f2
�u = 0

��
�x1

= 0 ��
�x2

= 2x2
��
�u = 0

Inserting the stationary values and introducing the variables ∆x = x −
x0,∆u = u− u0 and ∆y = y− y0, we get the linearized system

∆̇x =
(

0 −6
1 0

)

∆x +
(

0.5

0

)

∆u

∆y = (0 1 ) ∆x

b. The transfer function is calculated as

G(s) = C(sI − A)−1B = ( 0 1 )
(

s 6

−1 s

)−1(
0.5

0

)

= 0.5

s2 + 6

The two poles are located in ±
√
6 i. Hence, the system is marginally stable

(i.e., stable but not asymptotically stable).

3. Figure 2 shows the pole-zero maps of four systems, and Figure 3 shows the

step responses of the same systems, but not necessarily in the same order.

The transfer function of each system can be written in the form

G(s) = ω 20
s2 + 2ζ ω 0s+ω 20

Match the pole-zero maps 1–4 with the corresponding step responses A–D.

Motivate! (2 p)
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Figure 2 Pole-zero maps for Problem 3
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Figure 3 Step responses for Problem 3
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Solution

Largerω 0 gives faster step response, and poles further away from the origin.
Larger ζ gives a more damped step response, and smaller angle between
the poles and the negative real axis (see page 45 in the course book). Hence,
the correct matching is 1–D, 2–C, 3–B, 4–A.

4. A process is described by the following differential equation, where u is the

input and y is the output.

3ẏ(t) + y(t) − u(t− 0.1) = 0

a. Calculate the transfer function of the process. What are the static gain, the

time constant, and the deadtime of the process? (2 p)

b. Calculate the impulse response of the process. (1 p)

Solution

a. Laplace transformation of the equation yields

3sY(s) + Y(s) − e−0.1sU(s) = 0

Solve for Y(s) to obtain

Y(s) = e
−0.1s

3s+ 1U(s)

Now, the transfer function can be identified as

G(s) = e
−0.1s

3s+ 1

• The system is asymptotically stable, so the static gain is given by
G(0) = 1.

• The time constant is identified as T = 3.
• The deadtime is identified as L = 0.1.

b. We have U(s) = 1, and hence Y(s) = e−0.1s
3s+1 . Inverse Laplace transformation

gives

y(t) =







0, t < 0.1
1

3
e−(t−0.1)/3, t ≥ 0.1

5. Consider an ideal PD controller

Gc(s) = K (1+ sTd)

a. Calculate the gain of the controller for a sinusoidal input e(t) = sinω t.
(1 p)
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b. What happens to the controller gain for large frequencies, and why is this

a problem? How can the problem be handled in a practical implementation

of the controller? (1 p)

Solution

a. The gain is calculated as

pG(iω )p =
∣
∣K (1+ iωTd)

∣
∣ = K

√

1+ (ωTd)2

b. Very large input frequency gives a very large gain, and the controller is

very sensitive to high-frequency noise. This can be coped with by using the

following approximation of the derivative term, where the derivative gain

is limited by N :

D(s) = sKTd

1+ sKTd/N

6. Consider the block diagram in Figure 4, where the transfer functions are

assumed to be

G1(s) = 3
(

1+ 1
5s

)

G2(s) =
2− s
5s+ 1

a. What type of controller is G1(s)? Motivate! (1 p)

b. Calculate the transfer function Gyr(s) from r to y. What are its poles and
zeros? (2 p)

c. Determine, if possible, the static gain of Gyr(s). Assuming a constant refer-
ence value r, what does this imply for the static error e(∞)? (1 p)

Solution

a. This is a PI-controller, since it is in the form

G1(s) =K
(

1+ 1

sTi

)

The s in the denominator corresponds to time integration, and forms the

integral part together with the control parameters.

r

l1 l2

n

ye u

Σ

ΣΣΣ G1(s) G2(s)

−1

Figure 4 Block diagram in Problem 6 (and Problem 10).
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b. Setting l1 = l2 = n = 0, we obtain

Y(s) = G2(s)G1(s)(R(s) − Y(s))

Y(s) = G2(s)G1(s)
1+ G2(s)G1(s)
︸ ︷︷ ︸

=Gyr(s)

R(s)

Inserting the given transfer functions, we calculate

Gyr(s) =
−1.5(s+ 0.2)(s− 2)
(s+ 0.2)(s+ 3) = −1.5(s− 2)

s+ 3

The zero is hence located in +2, and the pole is located in −3.
(The process pole in −0.2 is cancelled by the controller zero in the same
location—this is typical for Lambda tuning.)

c. Since the system is asymptotically stable (pole strictly in left half-plane),
the static gain can be found as G(0) = 1. This implies that there will be no
static error, since we will have y(t) = r(t) in stationarity (again assuming
l1 = l2 = n = 0).

7. The Nyquist plot of a linear system G(s) is shown in Figure 5. You may
assume that all poles of the system are located in the left half-plane.
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Figure 5 Nyquist plot of G(s) in Problem 7.

a. Estimate the phase margin, the amplitude margin, and the static gain of

the system. (1.5 p)

b. Let the system be feedback interconnected as shown in Figure 6 with K ≥ 0.
Let d = 1 be a constant disturbance. Calculate the stationary error e(∞) as
a function of K . What is the smallest stationary error that may be achieved?

(1.5 p)
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Figure 6 Feedback system in Problem 7.

Solution

a. The phase-margin is 90 deg as seen by the intersection of the unit-circle

and the Nyquist curve. The Nyquist curve intersects the negative real axis

at about −0.2 (the actual value is −1
6
), which gives an amplitude margin

of 5 (respectively 6).
The static gain is given by G(0), which is about 1.6 (the actual value is 5

3
).

b. In the Laplace domain, we have

E(s) = G(s)(D(s) − KE(s)) \ E(s) = G(s)
1+ KG(s)D(s)

With D(s) = 1
s
, we have

e(∞) = lim
s→0
sE(s) = G(0)

1+ KG(0) =
5/3

1+ 5K/3

The stationary error decreases with larger K , and for stability we need

K < 6. Hence, the smallest stationary error that is possible is 0.15.

8. Only for FRTN25 Process Control. You have designed a sequential

controller for a batch reactor and used GRAFCET to describe the logic, see

Figure 7. The controller works as follows:

• The sequence starts when the user pushes the Start button (Start be-
comes true).

• The reactor is filled with reactant by the pump (action P). When the
desired level is reached (L2 becomes true), the pump is stopped.

• The heating of the reactor is now started (action Q). The heating stops
when the temperature reaches the desired value (T becomes true).

• The reactor is now waiting for the reaction to finish. When the operator
pushes the Empty button (Empty becomes true), the output valve is
opened (action V). When the reactor is empty (L1 becomes false), the
valve is closed and the program returns to the initial step.

Modify the program so that the following new features are implemented:

• Filling and heating should be done in parallel. Heating may however
not start until the low level sensor L1 becomes true.

• It should be possible to abort the parallel filling and heating at any
time by pressing the Empty button. (3 p)
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Figure 7 GRAFCET in Problem 8

Solution

One solution is shown in Figure 7. More elaborate solutions are also pos-

sible.

9. Only for FRTN25 Process Control. The relative gain array for a 4$ 4
model of a distillation column has been computed as follows:

Λ =





0.931 0.150 0.08 −0.164
−0.011 −0.429 0.286 1.154

−0.135 3.314 −0.27 −1.91
0.215 −2.03 0.90 1.919





Using four simple controllers, which output signal y1 . . . y4 should be fed

back to what input signal u1 . . . u4? Motivate! (1 p)

Solution

For each row in Λ (each corresponding to an output), one should find a
column (each corresponding to an input) with a non-negative element close
to one. In row 1, the first element is 0.931. In row 2, the fourth element is

1.154. In row 3, the only positive element is the second one, 3.314. In row 4,

the third element is 0.90. A suitable pairing is hence y1–u1, y2–u4, y3–u2,

y4–u3.

10. Only for FRTN25 Process Control. Again consider the block diagram

in Figure 4, but now assume that G1(s) and G2(s) are arbitrary multivari-
able systems of matching dimensions. Calculate the multivariable transfer

function from the reference signal vector r to the control signal vector u.

(1 p)
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Figure 8 GRAFCET in Problem 8

Solution

The control signal vector is given by

U(s) = G1(s)(R(s) − G2(s)U(s))

Solving for U(s) we obtain

(I + G1(s)G2(s))U(s) = G1(s)R(s)
U(s) = (I + G1(s)G2(s))−1G1(s)R(s)

The multivariable transfer function from r to u is hence given by

Gur(s) = (I + G1(s)G2(s))−1G1(s)
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