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1. In stationarity, all time derivatives are zero. This gives:
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For linearization of the system, the new variables ∆V and ∆R are introduced:

∆V =V −V0

∆R = R−R0

The expressions for V̇ and Ṙ are linearized with respect to V and R which gives the

following expression for the linearized system:
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Values for the relevant stationary point are inserted:
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The system’s characteristic polynomial is calculated to determine its stability proper-

ties:

P(s) = (s+12.5)(s− 2

30
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373

30
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As all terms in the characteristic polynomial (in a 2nd order system) are positive, the

system is asymptotically stable.

2. The characteristic polynomial is s3 +3s2 +4s+10. Since 3 > 0, 4 > 0, 10 > 0 and 3 ·
4>10, all poles are strictly in the left half-plane, according to Routh–Hurwitz stability

criterion for a third-order polynomial.

3. The poles of G1(s) are s = ±i, which means that the system is stable but not asymp-

totically stable. The only step response that could correspond to this system is F.

The second system G2(2) is asymptotically stable and its static gain is one, which

means that the system must correspond to either A, C or E. Since it is a first order

system it cannot have any overshot, which rules out C and E. The relative degree of

the system is one, which means that the initial derivative och the step response is

nonzero. Either of the above mentioned motivations gives that G2(s) must correspond

to A.

The third system is also asymptotically stable. The static gain is zero, which means it

must corresponds to step response D.

The fourth and final system is a asymptotically stable second-order system with a

time-delay of one time unit. The static gain is one and the relative damping is ζ =
0.5, which means that the step response will have an overshot and will settle at the

amplitude 1. The only system that has an overshot and a time-delay is E.
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Figur 1 PID controller with anti-windup.

4.

Gcl(s) =
KG(s)

1+KG(s)
=

K

(s−2)(s+4)+K
=

K

s2 +2s−8+K

For stability, the terms a and b in the characteristic polynomial on the form s2+as+b

must be non-negative, i.e. K must be at least 8.

5 a. The controller is a PI controller. A limitation in the actuator is causing the control

signal to saturate, which will cause wind-up of the integral part in the controller. At

time t ∈ [0,20] the controller fails to match the output with the reference, this indicates

either that a P controller with too low gain is implemented or that actuator saturation

has occurred in a controller with an integral part. At time t ∈ [20,30], the control signal

stays high for ten seconds after the decrease in reference, indicating that the problem

is integrator wind-up.

b. Integrator wind-up can be mitigated with an anti wind-up scheme. The amount of ac-

tuator saturation is fed back to the input of the integrator which will stop the integrator

from obtaining a higher value, see Figure 1.

6 a. The Laplace transform of the differential equation is

sY +Y −U = 0 ⇒ Y (s) =
1

s+1
U(s) = GP(s)U(s)

The process has a single pole in −1 which indicates that the process is asymptotically

stable.

b. The Laplace transform of the PI controller is

U(s) = K

(

1+
1

sTi

)

E(s) =
sKTi +K

sTi

E(s) = GR(s)E(s)

The closed-loop transfer function from R(s) to Y (s) is

Y (s) =
GP(s)GR(s)

1+GP(s)GR(s)
R(s)

=
sKTi +K

sTi(s+1)+ sKTi +K

=
sK +K/Ti

s2 + s(K +1)+K/Ti
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The pole specification −2± i yields a characteristic polynomial (s+2+ i)(s+2− i) =
s2 +4s+5, which in turn determines K = 3 and Ti =

3
5

c. The response of a linear system to a sinusoidal input Asin(ωt) is

|G(iω)|Asin(ωt +arg(G(iω)))

The frequency function, its magnitude and argument are

G(iω) =
5+3iω

(2+(1+ω)i)(2+(1−ω)i)

|G(iω)|=
√

25+9ω2

√

4+(ω +1)2
√

4+(ω −1)2

arg(G(iω)) = arctan
3ω

5
− arctan

ω +1

2
− arctan

ω −1

2

Evaluated at the frequency ω = 1

|G(iω)|=
√

17

16
≈ 1.03

arg(G(iω))≈−0.245

y(t) = |G(iω)|2sin(ωt +arg(G(iω)))

= 2.06sin(t −0.245)

7. As shown in figure 2, the phase is −180 degrees at ω ≈ 13. There the gain is about

0.4, implying that the gain margin is approximately 2.5. The gain is 1 at ω ≈ 2.6.

There the phase is about −65 degrees, implying that the phase margin is about 115

degrees.

8 a. The stationary gain matrix is given by

G(0) =

[

a 1

3 2

]

. (1)

From this we can calculate the RGA as

RGA = G(0).∗ (G(0)−1)T =
1

2a−3

[

2a −3

−3 2a

]

. (2)

b. For a = 0 we have

RGA =

[

0 1

1 0

]

(3)

and from this we see that we should control the first output using the second control

signal and the second output using the first control signal. The system is decoupled in

stationarity.

c. For a = 3 we have

RGA =

[

2 −1

−1 2

]

. (4)

The inputs and outputs should be paired so that the corresponding relative gains are

positive and as close to one as possible. Hence, we should control the first output

using the first control signal and the second output using the second control signal.

The system has difficult interaction.
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Figur 2 Gain and phase margins.

d. That the system is decoupled in stationarity and has static gains of one is equivalent

to
[

1 0

0 1

]

= G(0)D. (5)

From this we see that the static decouples should be the inverse of G(0).

D =

[

2/3 −1/3

−1 1

]

. (6)

Since the decoupler is static it is obviously realizable.

9 a. Forward approximation gives

y(kh+h)− y(kh)

h
+2y(kh) = 3u(kh)⇔

y(kh+h) = (1−2h)y(kh)+3hu(kh)

b. Backward approximation gives

y(kh)− y(kh−h)

h
+2y(kh) = 3u(kh)⇔

y(kh) =
1

1+2h
(y(kh−h)+3hu(kh))
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