
Lösningar till tentamen i Systemteknik 2014-05-27

1 a. Laplace transformation of the differential equation gives:

s2Y (s)+3sY (s)+5Y (s)+2sU(s) = 8U(s)↔ Y (s) =
−2s+8

s2 +3s+5
U(s)

The characteristic polynomial is s2 + 3s+ 5. Since 3 > 0 and 5 > 0, the system is

asymptotically stable.

b. The system has two poles. It is of second order.

c. The differential equation is a linear combination of y(t) and u(t) and time derivatives

of these. Hence, the system is linear.

2 a. The zero is given by

8s−3 = 0 ↔ s =
3

8
.

The poles are given by

s2 +4s−1 = 0 ↔ s =−2±
√

4+1 ↔ s1 =−2+
√

5,s2 =−2−
√

5.

Since one pole is in the right half-plane, the process is not stable.

b. We have the following relation between the input and the output:

Y (s) = Gp(S)U(s)↔ s2Y (s)+4sY (s)−Y (s) = 8sU(s)−3U(s)

Inverse Laplace transformation gives the differential equation

ÿ+4ẏ− y = 8u̇−3u.

3. Introduce f1(x1,x2,u) and f2(x1,x2,u) such that

ẋ1 = x1x2 − x2
2u = f1(x1,x2,u)

ẋ2 =−(x1 −2)2 +
√

x1

√
x2 = f2(x1,x2,u).

a. The stationary points can be found by solving

f1(x
0
1,x

0
2,u

0) = 0, f2(x
0
1,x

0
2,u

0) = 0.

Inserting u0 = 1 and starting with the first equation we get

x0
2

(

x0
1 − x0

2

)

= 0

from which we see that x0
2 = 0 or x0

2 = x0
1. Evaluation of the second equation with

x0
2 = 0 gives us

(

x0
1 −2

)2
= 0

from which we see that x0
1 = 2. Evaluation of the second equation with x0

2 = x0
1 gives

us

−
(

x0
1 −1

)2
+ x0

1 = 0 ⇔
(

x0
1

)2 −5x0
1 +4 = 0.

Solving the equation we obtain x0
1 = 1 or x0

1 = 4.

The system has three stationary points: (1,0) (1,1) and (4,4) .
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b. The system should be linearized around x0
1 = x0

2 = 4 and u0 = 1. The partial derivatives

needed are

∂ f1

∂x1

= x2,
∂ f1

∂x2

= x1 −2x2u
∂ f1

∂u
=−x2

2

∂ f2

∂x1

=−2(x1 −2)+

√
x2

2
√

x1

,
∂ f2

∂x2

=

√
x1

2
√

x2

∂ f2

∂u
= 0

Introduce the new variables ∆x1 = x1 − x0
1, ∆x2 = x2 − x0

2, ∆u = u−u0. Evaluation of

the partial derivatives in the stationary point gives the following state-space represen-

tation of the linearized system:

∆̇x = A∆x+B∆u

where

A =

[

4 −4

−3.5 0.5

]

, B =

[−16

0

]

c. The poles are given by the eigenvalues of the A-matrix.

det(sI −A) =

∣

∣

∣

∣

s−4 4

3.5 s−0.5

∣

∣

∣

∣

= s2 −4.5s−12 = 0

By solving this equation we obtain the poles:

s1 =−1.88, s2 = 6.38

One pole lies in the right half-plane and the linearized system is therefore unstable.

4. The input has the angular frequency ω = 3 rad/s. From the Bode plot, we read the

approximate values |G(3i)| = 0.1 and arg(G(3i)) = −33◦ = −0.58 rad. Hence, we

get the output

y(t) = 0.3sin(3t −0.58)

5 a. Since both the controller and valve are open-loop stable the series connection will also

be stable. According to the Nyquist criterium the closed-loop system is stable, since

the Nyquist curve does not encircle −1.

b. The magnitude of the system for the frequency ω0 where the Nyquist curve intersects

the real axis is

G(iω0)≈−0.157

and the amplitude margin is

Am =
1

|G(iω0)|
= 6.35.

The argument of the system at the frequency ωc where the magnitude is 1, i.e., where

the Nyquist plot intersects the unit circle, is

arg G(iωc) =−116.1◦.

The phase margin is

ϕm = 180◦+ arg G(iωc) = 63.9◦.
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c. According to the gain and phase margins above, the system has good robustness.

However, the Nyquist curve is very close to the critical point, and if the gain and

the time-delay were to increase we can easily end up with an unstable closed-loop

system.

6 a. The transfer function of the controller is

Gr(s) = K(1+
1

sTi

).

The transfer function of the closed-loop system is

Gcl =
GpGr

1+GpGr

=
3K(s+ 1

Ti
)

s2 +(2+3K)s+ 3K
Ti

The denominator is compared to the desired characteristic polynomial (s+2)2 = s2+
4s+4. This gives K = 2

3
and Ti =

1
2
.

b. See the course literature.

7 a. In order for the controller to be asymptotically stable Tf > 0. The transfer function

from the reference to the error is given by

Ger(s) =
1

1+P(s)C(s)
=

1
Tf
(s−1)(sTf +1)

s2 +
1+8K−Tf

Tf
s+ 2K−1

Tf

Second order systems are asymptotically stable if and only if all coefficients of the

characteristic polynomial are strictly positive i.e.,

2K −1

Tf

> 0 ⇔ K >
1

2
1+8K −Tf

Tf

> 0 ⇔ Tf < 8K +1

so engineer C was right.

b. The reference is a unit step i.e., R(s) = 1
s
. To find the stationary error we assume that

K >
1

2
and make use of the final value theorem

lim
s→0

sE(s) = lim
s→0

sGer(s)R(s) = lim
s→0

Ger(s) =− 1

2K −1

The magnitude of the error should be less than or equal to 0.05

1

2K −1
≤ 0.05 ⇔ K ≥ 9.5

The smallest K that satisfies the specification is K = 9.5.

8 a.

G(s) =C(sI −A)−1B =

(

2 0

0 2

)(

s+1 1

1 s+3

)−1(
1 0

0 1

)

=

2

s2 +4s+2

(

s+3 −1

−1 s+1

)

=

( 2(s+3)
s2+4s+2

−2
s2+4s+2

−2
s2+4s+2

2(s+1)
s2+4s+2

)
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b. Determine the Relative Gain Array (RGA), Λ, of the system.

Λ = G(0).∗ (G(0)−1)T =

(

3 −1

−1 1

)

.∗ 1

2

(

1 1

1 3

)

=

(

1.5 −0.5

−0.5 1.5

)

Elements close to 1 indicate good pairing. In this case, it is best to choose (1 ↔ 1)
och (2 ↔ 2).

The engineer has made the following mistakes:

1. The transition where the parallel tracks join will never be true. The condition

should always be true.

2. The production of fire units is started but never stopped. There are different ways

of stopping the production. You could for instance change the line

S ProduceFire = 1; to N ProduceFire;. Another possibility is to add an

exit action in the same block that starts the production i.e., add the line

X ProduceFire = 0;. A third option is to end the production when 50 units

are produced by adding S ProduceFire = 0; to the step after the transition

FireUnitsDone == 50.

3. The conditions for when to produce another batch and when to go back to the

start should be switched. According to the conditions in the original diagram the

system goes back to the initial step if Batches is less than ten.

4. The integer Batches needs to be reset in the initial step i.e, the line S Batches = 0;

needs to be added to the initial step.
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