Systems Engineering/Process Control L10

Controller structures

- Cascade control
- Mid-range control
- Ratio control
- Feedforward
- Delay compensation

Reading: Systems Engineering and Process Control: 10.1–10.6

Cascade control

Cascade control can be used for systems that can be split:

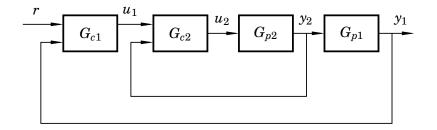
$$u$$
 G_{p2} y_2 G_{p1} y_1

where

- ▶ both *y*² and *y*¹ can be measured
- ▶ G_{p2} is (or can be made) at least 10 times faster than G_{p1}

Example:
$$G_{p1}=rac{K_1}{1+T_1s}$$
 and $G_{p2}=rac{K_2}{1+T_2s}$ with $T_2<0.1T_1$

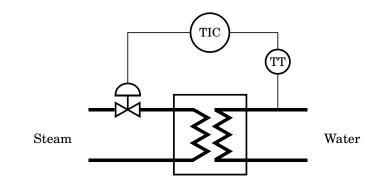
Cascade control – block diagram



Secondary controller G_{c2} controls y₂

- Inner loop is fast compared to outer loop
- Often P-controller with high gain
- For outer loop we have y₂ ≈ u₁
- Primary controller G_{c1} controls y₁
 - Often PI or PID controller

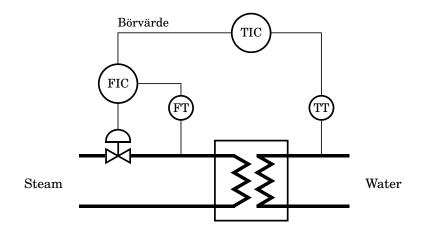
Example: Heat exchanger



Control may work poorly if, e.g.,:

- valve in nonlinear
- steam pressure varies (load disturbance)

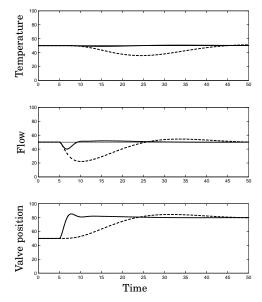
Example: Heat exchanger with cascade control



- The inner loop controls the steam flow
- Setpoint to flow controller given by temperature controller

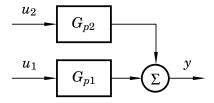
Example: Heat exchanger – simulation

With cascade control (solid) and without (dashed); disturbance at t = 5:



Mid ranging

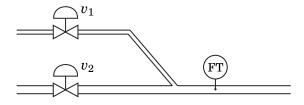
Useful for processes with two inputs and one measurement, e.g.,:



- u₁ high precision but little working range
- u₂ low precision but big working range

Mid ranging – Example

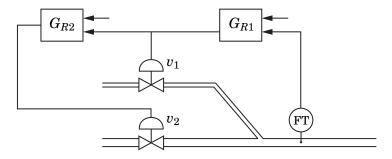
Flow control with two controlled valves:



- Valve v₁ is small and has high accuracy
 - big risk of saturation
- Valve v₂ is big but has worse accuracy
- How can they cooperate?

Mid ranging – Example

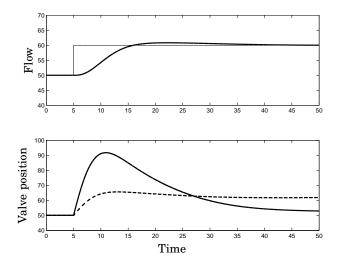
Mid ranging:



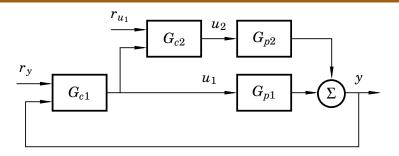
- ▶ Fast controller *G*_{*R*1} controls flow with little valve *v*₁
- Slow controller G_{R2} adjusts big valve v₂ such that v₁ is in the middle of its working range

Mid ranging – simulation

Big valve (dashed) keeps little valve (solid) at 50%



Mid ranging – Block diagram

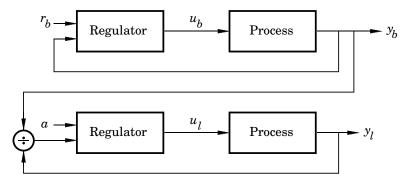


- ▶ G_{c1} and G_{p1} forms a fast and accurate loop
- ▶ Input from G_{c1} is measurement for G_{c2}
 - r_{u_1} chosen to middle of u_1 :s working range
- ▶ G_{c2} has low gain, maybe only I part
 - Rule of thumb: at least 10 times bigger time constant than fast loop

Ratio control

Example: Keep constant air/fuel ratio

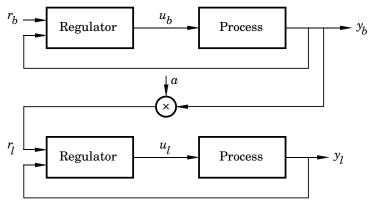
Suppose we want $y_l/y_b = a$. Naive solution (control ratio *a* directly):



Nonlinear, gain in second loop varies with y_b

Ratio control

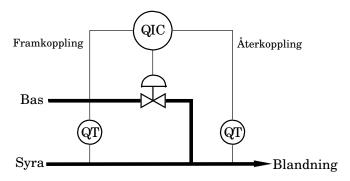
Better solution:



- Setpoint for flow to first loop that is assumed slow
- Second loop is made fast and maintains desired ratio

Feedforward – Example

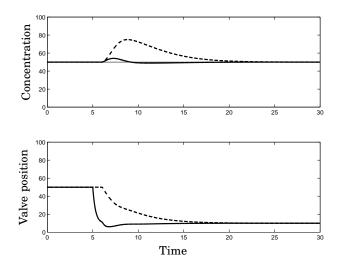
Concentration control



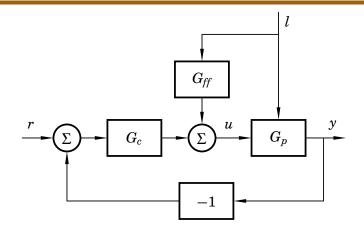
 Feedforward can compensate for sudden changes in acid concentration

Feedforward – Simulation of example

With feedforward (solid) and without (dashed); disturbance at t = 5:



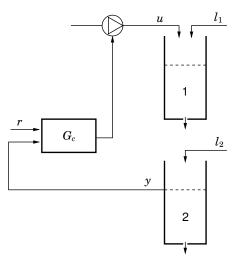
Feedforward – Block diagram



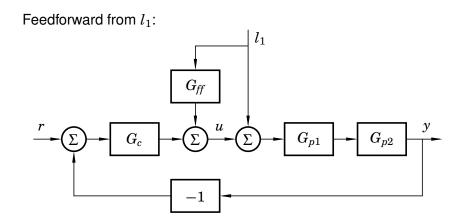
How to choose compensator $G_{ff}(s)$? Depends on where disturbance l enters the system.

Feedforward – Tank example

Control of lower tank

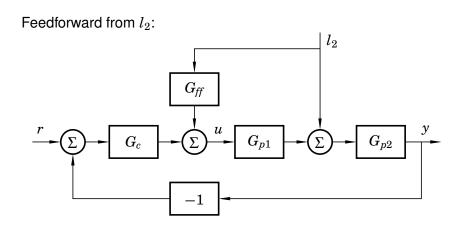


Feedforward – Tank example



Choose $G_{ff}(s) = -1$ to eliminate effect of disturbance

Feedforward – Tank example



Choose $G_{ff}(s) = -\frac{1}{G_{P1}}$ to eliminate effect of disturbance

Implementation of feedforward

The inverse $\frac{1}{G_{p1}(s)}$ can be problematic to implement

Example:

$$\begin{split} G_{p1}(s) &= \frac{1}{1+sT} e^{-sL} \\ \frac{1}{G_{p1}(s)} &= (1+sT) e^{sL} \quad \text{(derivation and neg. time delay)} \end{split}$$

Common solutions:

- Introduce lowpass filter (compare D part in PID-controller)
- Approximate negative time delays with 0
- Implement the static gain only

Dead time compensation

Example of dead time process:

$$G_p(s) = \frac{K_p}{1+sT}e^{-sL}$$

Hard to control if L > T (dead time dominated)

Frequency analysis:

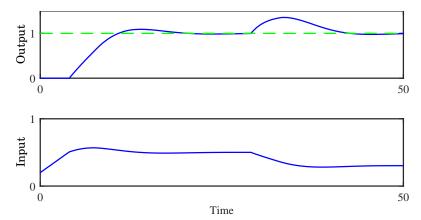
$$egin{aligned} G_p(s) &= G_{p0}(s)e^{-sL} \ &|G_p(i\omega_c)| &= |G_{p0}(i\omega_c)| \ & ext{arg}\,G_p(i\omega_c) &= ext{arg}\,G_{p0}(i\omega_c) - \omega_cL \end{aligned}$$

The larger L, the smaller the phase margin

Example: Control of paper machine

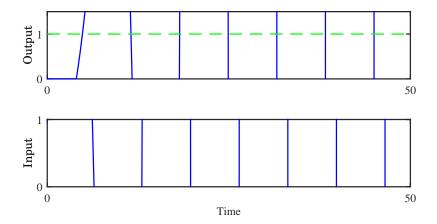
$$G_p(s) = \frac{2}{1+2s}e^{-4s}$$

Simulation with cautious PI controller ($K = 0.2, T_i = 2.6$); disturbance at t = 25:

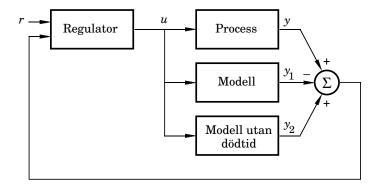


Example: Control of paper machine

Simulation with more aggressive PI controller ($K = 1, T_i = 1$):



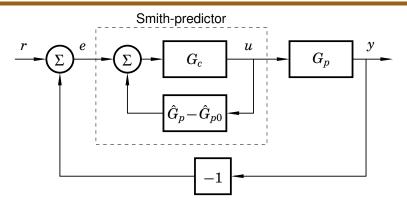
Dead time compensation with Smith predictor



Controller designed after model without delay. Model must be:

- asymptotically stable
- accurate enough

Analysis of Smith predictor



•
$$G_p = G_{p0}e^{-sL}$$
 – real process

- $\hat{G}_p = \hat{G}_{p0}e^{-s\hat{L}}$ model of process
- \hat{G}_{p0} model of process without dead time
- G_c controller designed for \hat{G}_{p0}

Analysis of Smith predictor

Control signal:

$$U=rac{G_c}{1-G_c(\hat{G}_p-\hat{G}_{p0})}E$$

Closed loop system:

$$Y = \frac{G_p G_c}{1 - G_c (\hat{G}_p - \hat{G}_{p0}) + G_p G_c} R$$

Suppose $G_p = \hat{G}_p$ (perfect model):

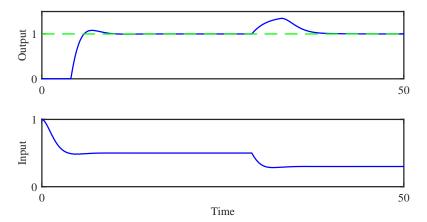
$$Y = \frac{G_{p0}e^{-sL}G_c}{1 - G_c(G_{p0}e^{-sL} - G_{p0}) + G_{p0}e^{-sL}G_c}R$$
$$= \frac{G_{p0}G_c}{1 + G_{p0}G_c}e^{-sL}R$$

Like control of process without delay, but with delayed response

Example: Control of paper machine

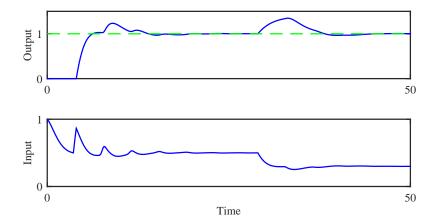
Model without delay: $G_{p0}(s) = \frac{2}{1+2s}$

Simulation with aggressive PI controller ($K = 1, T_i = 1$) and Smith predictor with perfect process model:



Example: Control of paper machine

Simulation with aggressive PI controller and Smith predictor with not perfect process model ($\hat{L} = 0.9L$, $\hat{T} = 0.9T$):



The Smith predictor – conclussions

- Works only for asymptotically stable systems
- Works only if process model is accurate
- Controller should be designed such that closed-loop time constant larger than process dead time

(Better variations for dead time compensation exist, but all rely on prediction using a process model)