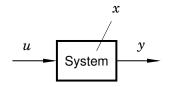
Systems Engineering/Process Control L2

- Process models
- Step-response models
- The PID controller

Reading: Systems Engineering and Process Control: 2.1-2.5

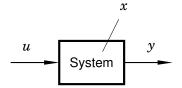

Process models

We will primarily work with processes that are described by

continuous (as opposed to discrete – FX),
linear (as opposed to nonlinear – F3, F5),
time invariant (as opposed to time varying),
dynamic (as opposed to static)

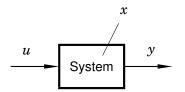
systems

Static vs dynamic systems

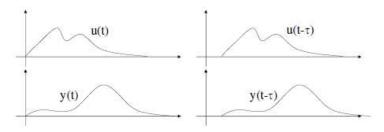

Static system: y(t) = f(u(t))

- Output y right now depends only on input u right now
- New equilibrium is found instantaneously after input changes

Dynamic system: $y(t) = f(u_{[0,t]}, x(0))$


- Output y(t) depends on all old inputs $u_{[0,t]}$ and the system initial state x(0)
- For (stable) dynamical systems, there is a lag before a new equilibrium is reached after an input change

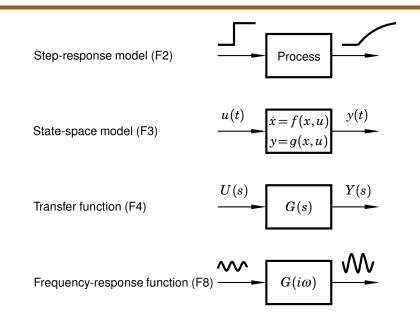
Static or dynamic system?


System	Input (u)	Output (y)	S/D
Shower	Temperature knob	Water temperature	D
Lamp	Light switch	Light	S
Lamp	Dimmer	Light	S
Water tank	Inflow and outflow	Water level	D
Cruise control	Throttle	Speed	D

Time invariant vs time varying systems

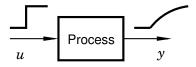
Time invariant system: The system dynamics does not change over time

Input delayed by τ time units \Rightarrow output delayed by τ time units:


Time varying systems:

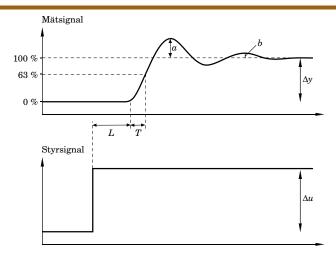
- Lamp with switch and timer: Different response depending on time
- ► Rockets: Decreasing fuel amount ⇒ system dynamics change

Time invariant systems:


- Lamp with switch without timer
- Water tank with inflows and outflows
- Cruise control in the car

Process models used in course

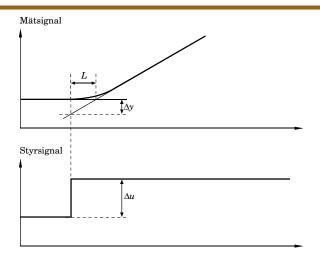
Step-response experiment


A simple method to learn the process dynamics

- Wait until process is in equilibrium
- Change input u with a step of size Δu
- Record and analyze output y

(We assume here one input and one output)

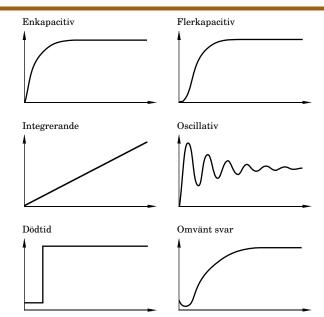
Step-response example

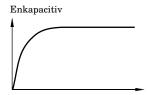


- Dead time = L
- ▶ Time constant = T

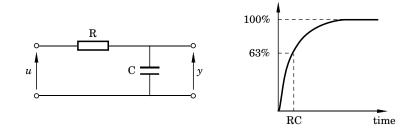
• Static gain =
$$K_p = \Delta y / \Delta u$$

- Overshoot = $a/\Delta y$
- Damping = 1 b/a

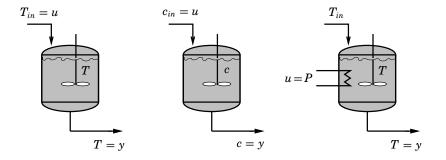

Step-response for integrating process


Dead time = L

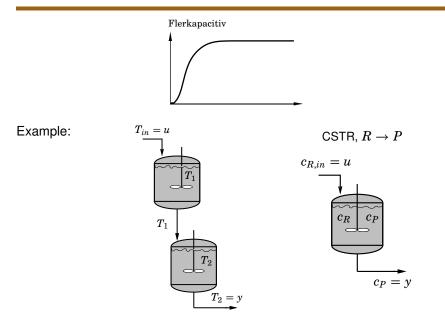
• Velocity gain =
$$K_v = \Delta y / (\Delta u \cdot L)$$


Step-response for some different process types

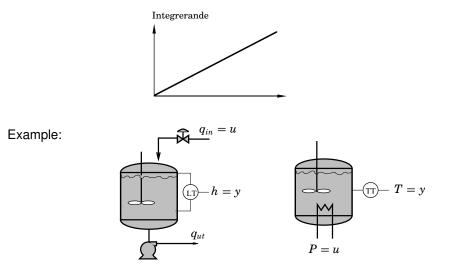
Single-capacitive processes



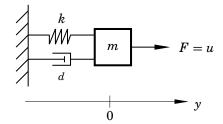
Example: RC circuit

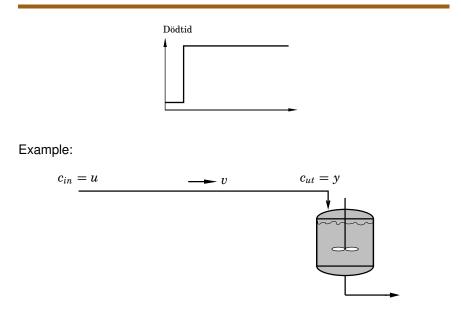


Single-capacitive processes

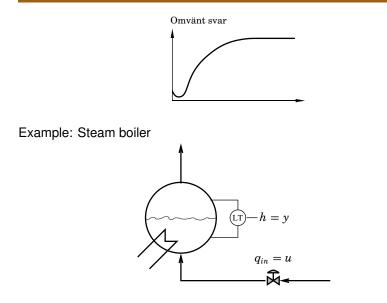

Example: Continuously stirred tank (CST) with constant flow

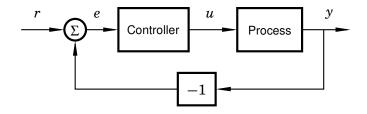
Multi-capacitive processes


Integrating processes


Oscillatory processes

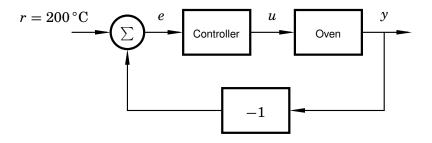
Oscillativ


Example: Mechanical system with little damping


Dead time processes

Inverse response processes

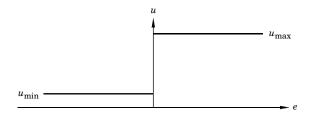
The standard feedback loop

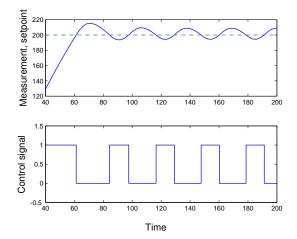

- Objective: measurement signal y should follow setpoint (reference) r
- Controller computes input *u* from control error e = r y

Simple feedback controllers

On/off-controller

- The simplest feedback controller
- PID-controller
 - The most common controller in industry
 - P = proportional
 - I = integral
 - D = derivative


Example: Oven

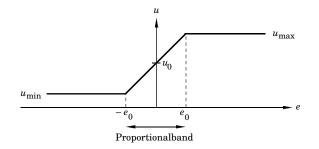

- y = measured temperature (output/measurement signal)
- r = desired temperature (setpoint/reference)
- u = heating effect ($0 \le u \le 1$) (control signal/input)

On/off-control

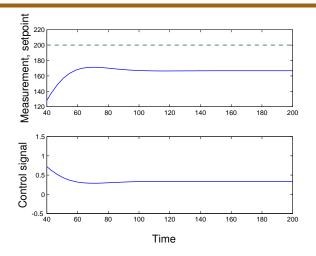
$$u(t) = \begin{cases} u_{\max}, & e(t) > 0\\ u_{\min}, & e(t) < 0 \end{cases}$$

Simulation of oven with on/off-control

Drawbacks with on/off-control


- Oscillations
- Wear on actuators
- Works only for processes with:
 - simple dynamics
 - Iow performance requirements

P-control


Use proportional (to control error) control for small errors:

$$u(t) = \begin{cases} u_{\max}, & e(t) > e_0 \\ u_0 + Ke(t), & -e_0 \le e(t) \le e_0 \\ u_{\min}, & e(t) < e_0 \end{cases}$$

• K = proportional gain

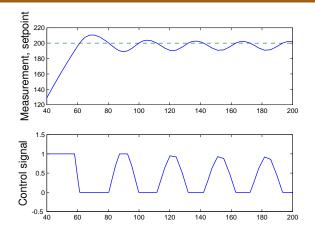
Simulation of oven with P-control ($u_0 = 0$)

Stationary control error (at stationarity $y(t) \neq r(t)$)

Mini problem

Approximately with K-value is used in previous slide?

Suppose that P-controller works in proportional band ($-e_0 < e < e_0$). Then:


$$e = \frac{u - u_0}{K}$$

Two ways to eliminate stationary error (i.e., get e = 0):

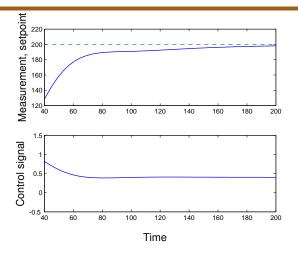
• Let
$$K \to \infty$$

Select u_0 such that e = 0 in stationarity

Simulation of P-control with increased *K*

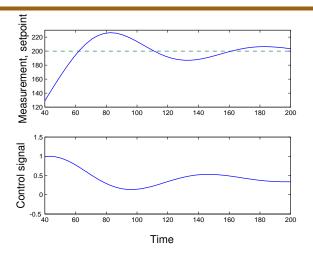
Faster control but more oscillations

PI-control


Replace the constant term u_0 with integral part:

$$u(t) = K\left(e(t) + rac{1}{T_i}\int_0^t e(au)d au
ight)$$

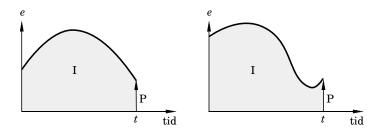
• T_i = integral time


(Note: The PI-controller is a dynamical system in itself!)

Simulation of oven with PI-control

- Control error goes asymptotically towards zero
- Can prove that stationary error is always zero when using PI-control (provided closed loop system is stable)

Simulation of oven with decreased T_i



- More integral action
- Faster control but more oscillations

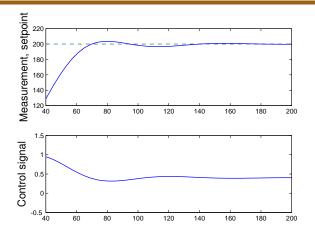
Prediction

A PI-controller does not predict future errors

The same control signal is obtained in both of the following cases:

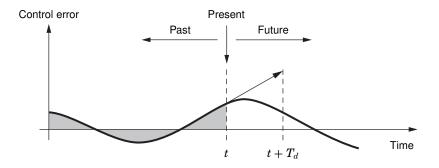
PID-control

The velocity can be damped by introducing derivative action:

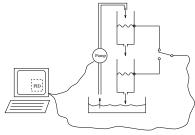

$$u(t) = K\left(e(t) + rac{1}{T_i}\int_0^t e(au)d au + T_drac{de(t)}{dt}
ight)$$

• T_d = derivative time

The derivative part tries to estimate the error change in T_d time units:


$$e(t+T_d) \approx e(t) + T_d \frac{de(t)}{dt}$$

Simulation of oven with PID-control



Fast and well damped response, no stationary error

Summary of PID

The parameters to set: K, T_i , T_d

Control of water level in upper/lower tank

- Open-loop and closed-loop control
- Manual and automatic control
- Empirical setting of K, T_i , T_d

Controller type selection

- (On/off-controller)
- P-controller
- PD-controller
- PI-controller
- PID-controller
- I-controller

P-controller

Is good enough in some cases:

- Control of single-capacitive and integrating processes
 - ▶ big K gives small stationary error; no problems with stability
- Level control in buffer tanks
 - ▶ small *K* as long as tank is not almost empty or almost full
- As controller in inner loop in cascade control structure (F9)

PD-controller

Suitable in some cases:

- Control of some multi-capacitive processes, e.g., slow temperature processes
- Big K and T_d requires measurements with little noise

PI-controller

The most common choice of controller

- Eliminates stationary errors
- ▶ With cautious settings (small *K* big *T_i*) it works on all stable processes including dead time processes and processes with inverted response

PID-controller

- Can give improved performance compared to PI-controller, especially for multi-capacitive and integrating-capacitive processes
 - K can be increased and T_i decreased compared to PI-control
- Derivative part is sensitive to measurement noise

I-controller

A pure I-controller is given by

$$u(t) = k_i \int_0^t e(\tau) d\tau$$

•
$$k_i = integral gain$$

Can be used for static processes or single-capacitive processes to eliminate stationary errors