
Chapter Three
Examples

... Don’t apply any model until you understand the simplifying assumptions on which it is
based, and you can test their validity. Catch phrase: use only as directed. Don’t limit yourself
to a single model: More than one model may be useful for understanding different aspects of
the same phenomenon. Catch phrase: legalize polygamy.”
Saul Golomb, “Mathematical Models—Uses and Limitations,” 1970 [Gol70].

In this chapter we present a collection of examples spanning many different
fields of science and engineering. These examples will be used throughout the
text and in exercises to illustrate different concepts. First-time readers may wish to
focus on only a few examples with which they have had themost prior experience or
insight to understand the concepts of state, input, output and dynamics in a familiar
setting.

3.1 Cruise Control
The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of a road. The controller
compensates for these unknowns by measuring the speed of the car and adjusting
the throttle appropriately.
To model the system we start with the block diagram in Figure 3.1. Let v be

the speed of the car and vr the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signals v and vr and generates a control signal u that is sent to an
actuator that controls the throttle position. The throttle in turn controls the torque
T delivered by the engine, which is transmitted through the gears and the wheels,
generating a force F that moves the car. There are disturbance forces Fd due to
variations in the slope of the road, the rolling resistance and aerodynamic forces.
The cruise controller also has a human–machine interface that allows the driver
to set and modify the desired speed. There are also functions that disconnect the
cruise control when the brake is touched.
The system has many individual components—actuator, engine, transmission,

wheels and car body—and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller can be quite simple.
To develop a mathematical model we start with a force balance for the car body.

Let v be the speed of the car, m the total mass (including passengers), F the force
generated by the contact of the wheels with the road, and Fd the disturbance force

Feedback Systems by Astrom and Murray, v2.10d
http://www.cds.caltech.edu/~murray/FBSwiki
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torque T that is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to move. The velocity
of the car v is measured by a control system that adjusts the throttle through an actuation
mechanism. A driver interface allows the system to be turned on and off and the reference
speed vr to be established.

due to gravity, friction and aerodynamic drag. The equation of motion of the car is
simply

m
dv

dt
= F − Fd . (3.1)

The force F is generated by the engine, whose torque is proportional to the rate
of fuel injection, which is itself proportional to a control signal 0 ≤ u ≤ 1 that
controls the throttle position. The torque also depends on engine speed ω. A simple
representation of the torque at full throttle is given by the torque curve

T (ω) = Tm

(

1− β

(
ω

ωm
− 1

)2)

, (3.2)

where the maximum torque Tm is obtained at engine speed ωm . Typical parameters
are Tm = 190 Nm, ωm = 420 rad/s (about 4000 RPM) and β = 0.4. Let n be
the gear ratio and r the wheel radius. The engine speed is related to the velocity
through the expression

ω =
n
r
v =: αnv,

and the driving force can be written as

F =
nu
r
T (ω) = αnuT (αnv).

Typical values of αn for gears 1 through 5 are α1 = 40, α2 = 25, α3 = 16, α4 = 12
and α5 = 10. The inverse of αn has a physical interpretation as the effective wheel
radius. Figure 3.2 shows the torque as a function of engine speed and vehicle speed.
The figure shows that the effect of the gear is to “flatten” the torque curve so that
an almost full torque can be obtained almost over the whole speed range.
The disturbance force Fd has three major components: Fg, the forces due to
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Figure 3.2: Torque curves for typical car engine. The graph on the left shows the torque
generated by the engine as a function of the angular velocity of the engine, while the curve
on the right shows torque as a function of car speed for different gears.

gravity; Fr , the forces due to rolling friction; and Fa , the aerodynamic drag. Letting
the slope of the road be θ , gravity gives the force Fg = mg sin θ , as illustrated in
Figure 3.3a, where g = 9.8 m/s2 is the gravitational constant. A simple model of
rolling friction is

Fr = mgCr sgn(v),

where Cr is the coefficient of rolling friction and sgn(v) is the sign of v (±1) or
zero if v = 0. A typical value for the coefficient of rolling friction is Cr = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

Fa =
1
2
ρCd Av2,

whereρ is the density of air,Cd is the shape-dependent aerodynamic drag coefficient
and A is the frontal area of the car. Typical parameters areρ = 1.3 kg/m3,Cd = 0.32
and A = 2.4 m2.
Summarizing, we find that the car can be modeled by

m
dv

dt
= αnuT (αnv) − mgCr sgn(v) −

1
2
ρCd Av2 − mg sin θ, (3.3)

where the function T is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velocity v , which is also the output. The
input is the signal u that controls the throttle position, and the disturbance is the
force Fd , which depends on the slope of the road. The system is nonlinear because
of the torque curve, the gravity term and the nonlinear character of rolling friction
and aerodynamic drag. There can also be variations in the parameters; e.g., themass
of the car depends on the number of passengers and the load being carried in the
car.
We add to this model a feedback controller that attempts to regulate the speed

of the car in the presence of disturbances. We shall use a proportional-integral
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diagram is
shown in (a), and (b) shows the response in speed and throttle when a slope of 4◦ is encoun-
tered. The hill is modeled as a net change of 4◦ in hill angle θ , with a linear change in the
angle between t = 5 and t = 6. The PI controller has proportional gain is kp = 0.5, and the
integral gain is ki = 0.1.

controller, which has the form

u(t) = kpe(t) + ki
∫ t

0
e(τ ) dτ.

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller state z and implementing the differential equation

dz
dt

= vr − v, u = kp(vr − v) + ki z, (3.4)

where vr is the desired (reference) speed. As discussed briefly in Section 1.5, the
integrator (represented by the state z) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modeling errors. (The design of
PI controllers is the subject of Chapter 10.) Figure 3.3b shows the response of the
closed loop system, consisting of equations (3.3) and (3.4), when it encounters a
hill. The figure shows that even if the hill is so steep that the throttle changes from
0.17 to almost full throttle, the largest speed error is less than 1 m/s, and the desired
velocity is recovered after 20 s.
Many approximations were made when deriving the model (3.3). It may seem

surprising that such a seemingly complicated system can be described by the simple
model (3.3). It is important to make sure that we restrict our use of the model to
the uncertainty lemon conceptualized in Figure 2.15b. The model is not valid for
very rapid changes of the throttle because we have ignored the details of the engine
dynamics, neither is it valid for very slow changes because the properties of the
engine will change over the years. Nevertheless the model is very useful for the
design of a cruise control system. As we shall see in later chapters, the reason for
this is the inherent robustness of feedback systems: even if themodel is not perfectly
accurate, we can use it to design a controller and make use of the feedback in the
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Figure 3.4: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the five buttons on the cruise control interface: on, off, set,
resume or cancel.

controller to manage the uncertainty in the system.
The cruise control system also has a human–machine interface that allows the

driver to communicatewith the system. There aremany differentways to implement
this system; one version is illustrated in Figure 3.4. The system has four buttons:
on-off, set/decelerate, resume/accelerate and cancel. The operation of the system
is governed by a finite state machine that controls the modes of the PI controller
and the reference generator. Implementation of controllers and reference generators
will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles) and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [KN00] and in the survey papers by Powers et al. [BP96, PN00].

3.2 Bicycle Dynamics
The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the front
fork. A detailedmodel of a bicycle is complex because the system hasmany degrees
of freedom and the geometry is complicated. However, a great deal of insight can
be obtained from simple models.
To derive the equations of motion we assume that the bicycle rolls on the hor-

izontal xy plane. Introduce a coordinate system that is fixed to the bicycle with
the ξ -axis through the contact points of the wheels with the ground, the η-axis
horizontal and the ζ -axis vertical, as shown in Figure 3.5. Let v0 be the velocity of
the bicycle at the rear wheel, b the wheel base, ϕ the tilt angle and δ the steering
angle. The coordinate system rotates around the point O with the angular veloc-
ity ω = v0δ/b, and an observer fixed to the bicycle experiences forces due to the
motion of the coordinate system.
The tilting motion of the bicycle is similar to an inverted pendulum, as shown in
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Figure 3.5: Schematic views of a bicycle. The steering angle is δ, and the roll angle is ϕ. The
center of mass has height h and distance a from a vertical through the contact point P1 of the
rear wheel. The wheel base is b, and the trail is c.

the rear view in Figure 3.5b. Tomodel the tilt, consider the rigid body obtainedwhen
the wheels, the rider and the front fork assembly are fixed to the bicycle frame. Let
m be the total mass of the system, J the moment of inertia of this body with respect
to the ξ -axis and D the product of inertia with respect to the ξζ axes. Furthermore,
let the ξ and ζ coordinates of the center of mass with respect to the rear wheel
contact point, P1, be a and h, respectively. We have J ≈ mh2 and D = mah. The
torques acting on the system are due to gravity and centripetal action. Assuming
that the steering angle δ is small, the equation of motion becomes

J
d2ϕ
dt2

−
Dv0
b

dδ

dt
= mgh sin ϕ +

mv20h
b

δ. (3.5)

The term mgh sin ϕ is the torque generated by gravity. The terms containing δ and
its derivative are the torques generated by steering, with the term (Dv0/b) dδ/dt
due to inertial forces and the term (mv20h/b) δ due to centripetal forces.
The steering angle is influenced by the torque the rider applies to the handle

bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the road P2 is behind the axis of rotation of the
front wheel assembly, as shown in Figure 3.5c. The distance c between the contact
point of the front wheel P2 and the projection of the axis of rotation of the front
fork assembly P3 is called the trail. The steering properties of a bicycle depend
critically on the trail. A large trail increases stability but makes the steering less
agile.
A consequence of the design of the front fork is that the steering angle δ is

influenced both by steering torque T and by the tilt of the frame ϕ. This means
that a bicycle with a front fork is a feedback system as illustrated by the block
diagram in Figure 3.6. The steering angle δ influences the tilt angle ϕ, and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail, the
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applied to the
handlebars is T , the roll angle is ϕ and the steering angle is δ. Notice that the front fork
creates a feedback from the roll angle ϕ to the steering angle δ that under certain conditions
can stabilize the system.

bicycle will steer into the lean, creating a centrifugal force that attempts to diminish
the lean. Under certain conditions, the feedback can actually stabilize the bicycle.
A crude empirical model is obtained by assuming that the block B can be modeled
as the static system

δ = k1T − k2ϕ. (3.6)

This model neglects the dynamics of the front fork, the tire–road interaction and
the fact that the parameters depend on the velocity. A more accurate model, called
theWhipple model, is obtained using the rigid-body dynamics of the front fork and
the frame. Assuming small angles, this model becomes

M



ϕ̈
δ̈


 + Cv0




ϕ̇
δ̇


 + (K0 + K2v20)


ϕ

δ


 =


0T


 , (3.7)

where the elements of the 2×2 matrices M , C , K0 and K2 depend on the geometry
and the mass distribution of the bicycle. Note that this has a form somewhat similar
to that of the spring–mass system introduced in Chapter 2 and the balance system in
Example 2.1. Even this more complex model is inaccurate because the interaction
between the tire and the road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure 2.15b provides a
framework for understanding the validity of the model under these assumptions.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [Wil04] and Herlihy [Her04]. The model (3.7) was presented
in a paper byWhipple in 1899 [Whi99]. More details on bicycle modeling are given
in the paper [ÅKL05], which has many references.

3.3 Operational Amplifier Circuits
An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol and communication. It is also a key element in analog computing. Schematic
diagrams of the operational amplifier are shown in Figure 3.7. The amplifier has one
inverting input (v−), one noninverting input (v+) and one output (vout). There are
also connections for the supply voltages, e− and e+, and a zero adjustment (offset
null). A simple model is obtained by assuming that the input currents i− and i+ are



72 CHAPTER 3. EXAMPLES

e−

NC
e+

output
offset null

offset null
inverting input
non-inv. input

(a) Chip pinout

voutv−

v+

e−

e+i+

i−

(b) Full schematic

−

v+

v− vout

+

(c) Simple view

Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all connections. (c) Only the
signal connections.

zero and that the output is given by the static relation

vout = sat(vmin,vmax)

(
k(v+ − v−)

)
, (3.8)

where sat denotes the saturation function

sat(a,b)(x) =






a if x < a
x if a ≤ x ≤ b
b if x > b.

(3.9)

We assume that the gain k is large, in the range of 106–108, and the voltages vmin
and vmax satisfy

e− ≤ vmin < vmax ≤ e+

and hence are in the range of the supply voltages.More accuratemodels are obtained
by replacing the saturation function with a smooth function as shown in Figure 3.8.
For small input signals the amplifier characteristic (3.8) is linear:

vout = k(v+ − v−) =: −kv. (3.10)

Since the open loop gain k is very large, the range of input signals where the system
is linear is very small.

vmin

vout

v+ − v−

vmax

Figure 3.8: Input/output characteristics of an operational amplifier. The differential input is
given by v+ − v−. The output voltage is a linear function of the input in a small range around
0, with saturation at vmin and vmax. In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feedback around
an operational amplifier and has a corresponding block diagram (b). The resistors R1 and R2
determine the gain of the amplifier.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 3.9a. To model the feedback amplifier in the
linear range, we assume that the current i0 = i− + i+ is zero and that the gain of
the amplifier is so large that the voltage v = v− − v+ is also zero. It follows from
Ohm’s law that the currents through resistors R1 and R2 are given by

v1
R1

= −
v2
R2

,

and hence the closed loop gain of the amplifier is
v2

v1
= −kcl, where kcl =

R2
R1

. (3.11)

A more accurate model is obtained by continuing to neglect the current i0 but
assuming that the voltage v is small but not negligible. The current balance is then

v1 − v

R1
=

v − v2
R2

. (3.12)

Assuming that the amplifier operates in the linear range and using equation (3.10),
the gain of the closed loop system becomes

kcl = −
v2
v1

=
R2
R1

kR1
R1 + R2 + kR1

(3.13)

If the open loop gain k of the operational amplifier is large, the closed loop gain
kcl is the same as in the simple model given by equation (3.11). Notice that the
closed loop gain depends only on the passive components and that variations in k
have only a marginal effect on the closed loop gain. For example if k = 106 and
R2/R1 = 100, a variation of k by 100%gives only a variation of 0.01% in the closed
loop gain. The drastic reduction in sensitivity is a nice illustration of how feedback
can be used to make precise systems from uncertain components. In this particular
case, feedback is used to trade high gain and low robustness for low gain and high
robustness. Equation (3.13) was the formula that inspired Black when he invented
the feedback amplifier [Bla34] (see the quote at the beginning of Chapter 12).
It is instructive to develop a block diagram for the feedback amplifier in Fig-

ure 3.9a. To do this we will represent the pure amplifier with input v and output v2
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around an operational
amplifier. The capacitor C is used to store charge and represents the integral of the input.

as one block. To complete the block diagram, we must describe how v depends on
v1 and v2. Solving equation (3.12) for v gives

v =
R2

R1 + R2
v1 +

R1
R1 + R2

v2 =
R1

R1 + R2

( R2
R1

v1 + v2
)
,

and we obtain the block diagram shown in Figure 3.9b. The diagram clearly shows
that the system has feedback and that the gain from v2 to v is R1/(R1+ R2), which
can also be read from the circuit diagram in Figure 3.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the error e is small, and we find that
v2 = −(R2/R1)v1. Notice that the resistor R1 appears in two blocks in the block
diagram. This situation is typical in electrical circuits, and it is one reason why
block diagrams are not always well suited for some types of physical modeling.
The simple model of the amplifier given by equation (3.10) provides qualitative

insight, but it neglects the fact that the amplifier is a dynamical system. A more
realistic model is

dvout

dt
= −avout − bv. (3.14)

The parameter b that has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (3.14) is still not valid for very high or very low frequencies since drift
causes deviations at low frequencies and there are additional dynamics that appear
at frequencies close to b. The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typically in the range of 5–10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.
The operational amplifier is very versatile, and many different systems can be

built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
Exercise 3.5 shows how a second-order oscillator is implemented, and Figure 3.10
shows the circuit diagram for an analog proportional-integral controller. To develop
a simple model for the circuit we assume that the current i0 is zero and that the open
loop gain k is so large that the input voltage v is negligible. The current i through
the capacitor is i = Cdvc/dt , where vc is the voltage across the capacitor. Since
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the same current goes through the resistor R1, we get

i =
v1
R1

= C
dvc
dt

,

which implies that

vc(t) =
1
C

∫
i(t) dt =

1
R1C

∫ t

0
v1(τ )dτ.

The output voltage is thus given by

v2(t) = −R2i − vc = −
R2
R1

v1(t) −
1
R1C

∫ t

0
v1(τ )dτ,

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [Lun05,
Phi48], and their usage is described in many textbooks (e.g., [CD75]). Good infor-
mation is also available from suppliers [Jun02, Man02].

3.4 Computing Systems and Networks
The application of feedback to computing systems follows the same principles as
the control of physical systems, but the types of measurements and control inputs
that can be used are somewhat different. Measurements (sensors) are typically
related to resource utilization in the computing system or network and can include
quantities such as the processor load, memory usage or network bandwidth. Control
variables (actuators) typically involve setting limits on the resources available to a
process. This might be done by controlling the amount of memory, disk space or
time that a process can consume, turning on or off processing, delaying availability
of a resource or rejecting incoming requests to a server process. Process modeling
for networked computing systems is also challenging, and empirical models based
on measurements are often used when a first-principles model is not available.

Web Server Control
Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.
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Figure 3.11: Feedback control of a web server. Connection requests arrive on an input queue,
where they are sent to a server process. A finite state machine keeps track of the state of the
individual server processes and responds to requests. A control algorithm can modify the
server’s operation by controlling parameters that affect its behavior, such as the maximum
number of requests that can be serviced at a single time (MaxClients) or the amount of
time that a connection can remain idle before it is dropped (KeepAlive).

Figure 3.11 illustrates the use of feedback to modulate the operation of an
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each accepted
connection. This subprocess responds to requests from a given connection as they
come in, alternating between a Busy state and a Wait state. (Keeping the sub-
process active between requests is known as the persistence of the connection and
provides a substantial reduction in latency to requests for multiple pieces of infor-
mation from a single site.) If no requests are received for a sufficiently long period
of time, controlled by the KeepAlive parameter, then the connection is dropped
and the subprocess enters an Idle state, where it can be assigned another connec-
tion. A maximum of MaxClients simultaneous requests will be served, with the
remainder remaining on the incoming request queue.
The parameters that control the server represent a trade-off between perfor-

mance (how quickly requests receive a response) and resource usage (the amount
of processing power andmemory used by the server). Increasing theMaxClients
parameter allows connection requests to be pulled off of the queue more quickly
but increases the amount of processing power and memory usage that is required.
Increasing the KeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on themachine
but increases the size of the queue (and hence the amount of time required for a user
to initiate a connection). Successful operation of a busy server requires a proper
choice of these parameters, often based on trial and error.
To model the dynamics of this system in more detail, we create a discrete-time

model with states given by the average processor load xcpu and the percentage
memory usage xmem. The inputs to the system are taken as the maximum number
of clients umc and the keep-alive time uka. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

 xcpu[k + 1]
xmem[k + 1]


 =


A11 A12
A21 A22





 xcpu[k]
xmem[k]


+


B11 B12
B21 B22





uka[k]
umc[k]


 , (3.15)

where the coefficients of the A and Bmatrices can be determined based on empirical
measurements or detailed modeling of the web server’s processing and memory
usage. Using system identification, Diao et al. [DGH+02, HDPT04] identified the
linearized dynamics as

A =

 0.54 −0.11

−0.026 0.63


 , B =


−85 4.4

−2.5 2.8


 × 10−4,

where the system was linearized about the equilibrium point

xcpu = 0.58, uka = 11 s, xmem = 0.55, umc = 600.

This model shows the basic characteristics that were described above. Looking
first at the B matrix, we see that increasing the KeepAlive timeout (first column
of the B matrix) decreases both the processor usage and the memory usage since
there is more persistence in connections and hence the server spends a longer time
waiting for a connection to close rather than taking on a new active connection. The
MaxClients connection increases both the processing andmemory requirements.
Note that the largest effect on the processor load is the KeepAlive timeout.
The A matrix tells us how the processor and memory usage evolve in a region of
the state space near the equilibrium point. The diagonal terms describe how the
individual resources return to equilibrium after a transient increase or decrease.
The off-diagonal terms show that there is coupling between the two resources, so
that a change in one could cause a later change in the other.
Although this model is very simple, we will see in later examples that it can

be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types of
mechanisms have been used for other types of servers. It is important to remember
the assumptions on the model and their role in determining when the model is valid.
In particular, since we have chosen to use average quantities over a given sample
time, the model will not provide an accurate representation for high-frequency
phenomena.

Congestion Control
The Internet was created to obtain a large, highly decentralized, efficient and ex-
pandable communication system. The system consists of a large number of inter-
connected gateways. A message is split into several packets which are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“ack”) message is sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.
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Figure 3.12: Internet congestion control. (a) Source computers send information to routers,
which forward the information to other routers that eventually connect to the receiving com-
puter. When a packet is received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources and send the data
across the outgoing link. (b) The equilibrium buffer size be for a set of N identical computers
sending packets through a single router with drop probability ρ.

The system has two control mechanisms called protocols: the Transmission
Control Protocol (TCP) for end-to-end network communication and the Internet
Protocol (IP) for routing packets and for host-to-gateway or gateway-to-gateway
communication. The current protocols evolved after some spectacular congestion
collapses occurred in the mid 1980s, when throughput unexpectedly could drop by
a factor of 1000 [Jac95]. The control mechanism in TCP is based on conserving
the number of packets in the loop from the sender to the receiver and back to the
sender. The sending rate is increased exponentially when there is no congestion,
and it is dropped to a low level when there is congestion.
To derive an overall model for congestion control, we model three separate

elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers) and the admission
control mechanism for the queues. Figure 3.12a is a block diagram of the system.
The current source control mechanism on the Internet is a protocol known

as TCP/Reno [LPD02]. This protocol operates by sending packets to a receiver
and waiting to receive an acknowledgment from the receiver that the packet has
arrived. If no acknowledgment is sent within a certain timeout period, the packet
is retransmitted. To avoid waiting for the acknowledgment before sending the next
packet, Reno transmits multiple packets up to a fixed window around the latest
packet that has been acknowledged. If thewindow length is chosen properly, packets
at the beginning of the window will be acknowledged before the source transmits
packets at the end of the window, allowing the computer to continuously stream
packets at a high rate.
To determine the size of the window to use, TCP/Reno uses a feedback mech-

anism in which (roughly speaking) the window size is increased by 1 every time a
packet is acknowledged and the window size is cut in half when packets are lost.
This mechanism allows a dynamic adjustment of the window size in which each
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computer acts in a greedy fashion as long as packets are being delivered but backs
off quickly when congestion occurs.
A model for the behavior of the source can be developed by describing the

dynamics of the window size. Suppose we have N computers and let wi be the
current window size (measured in number of packets) for the i th computer. Let
qi represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
size by the differential equation

dwi

dt
= (1− qi )

ri (t − τi )

wi
+ qi (−

wi

2
ri (t − τi )), ri =

wi

τi
, (3.16)

where τi is the end-to-end transmission time for a packet to reach is destination and
the acknowledgment to be sent back and ri is the resulting rate at which packets
are cleared from the list of packets that have been received. The first term in the
dynamics represents the increase in window size when a packet is received, and the
second term represents the decrease in window size when a packet is lost. Notice
that ri is evaluated at time t−τi , representing the time required to receive additional
acknowledgments.
The link dynamics are controlled by the dynamics of the router queue and the

admission control mechanism for the queue. Assume that we have L links in the
network and use l to index the individual links. We model the queue in terms of the
current number of packets in the router’s buffer bl and assume that the router can
contain a maximum of bl,max packets and transmits packets at a rate cl , equal to the
capacity of the link. The buffer dynamics can then be written as

dbl
dt

= sl − cl, sl =
∑

{i : l∈Li }

ri (t − τ
f
li ), (3.17)

where Li is the set of links that are being used by source i , τ f
li is the time it takes a

packet from source i to reach link l and sl is the total rate at which packets arrive
at link l.
The admission control mechanism determines whether a given packet is ac-

cepted by a router. Since ourmodel is based on the average quantities in the network
and not the individual packets, one simple model is to assume that the probability
that a packet is dropped depends on how full the buffer is: pl = ml(bl, bmax). For
simplicity, we will assume for now that pl = ρlbl (see Exercise 3.6 for a more
detailed model). The probability that a packet is dropped at a given link can be used
to determine the end-to-end probability that a packet is lost in transmission:

qi = 1−
∏

l∈Li

(1− pl) ≈
∑

l∈Li

pl(t − τ bli ), (3.18)

where τ bli is the backward delay from link l to source i and the approximation is
valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.
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Together, equations (3.16), (3.17) and (3.18) represent a model of congestion
control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

dwi

dt
=
1
τ

−
ρc(2+ w2

i )

2
,

db
dt

=
N∑

i=1

wi

τ
− c, τ =

b
c
, (3.19)

wherewi ∈ R, i = 1, . . . , N , are the window sizes for the sources of data, b ∈ R is
the current buffer size of the router, ρ controls the rate at which packets are dropped
and c is the capacity of the link connecting the router to the computers. The variable
τ represents the amount of time required for a packet to be processed by a router,
based on the size of the buffer and the capacity of the link. Substituting τ into the
equations, we write the state space dynamics as

dwi

dt
=
c
b

− ρc
(
1+

w2
i
2

)
,

db
dt

=
N∑

i=1

cwi

b
− c. (3.20)

More sophisticated models can be found in [HMTG00, LPD02].
The nominal operating point for the system can be found by setting ẇi = ḃ = 0:

0 =
c
b

− ρc
(
1+

w2
i
2

)
, 0 =

N∑

i=1

cwi

b
− c.

Exploiting the fact that all of the source dynamics are identical, it follows that all
of thewi should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations

wi,e =
be
N

=
cτe
N

,
1

2ρ2N 2
(ρbe)3 + (ρbe) − 1 = 0. (3.21)

The solution for the second equation is a bit messy but can easily be determined nu-
merically. A plot of its solution as a function of 1/(2ρ2N 2) is shown in Figure 3.12b.
We also note that at equilibrium we have the following additional equalities:

τe =
be
c

=
Nwe

c
, qe = Npe = Nρbe, re =

we

τe
. (3.22)

Figure 3.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at t = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [Tan96]. A good presentation of the ideas behind the control prin-
ciples for the Internet is given by one of its designers, Van Jacobson, in [Jac95].
F. Kelly [Kel85] presents an early effort on the analysis of the system. The book
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Figure 3.13: Internet congestion control for N identical sources across a single link.As shown
on the left, multiple sources attempt to communicate through a router across a single link. An
“ack” packet sent by the receiver acknowledges that the message was received; otherwise the
message packet is resent and the sending rate is slowed down at the source. The simulation
on the right is for 60 sources starting random rates, with 20 sources dropping out at t = 500
ms. The buffer size is shown at the top, and the individual source rates for 6 of the sources
are shown at the bottom.

by Hellerstein et al. [HDPT04] gives many examples of the use of feedback in
computer systems.

3.5 Atomic Force Microscopy
The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across the sample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including the atomic force microscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. In tapping mode the cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of the cantilever base (or the
sample). The control system has a direct influence on picture quality and scanning
rate.
A schematic picture of an atomic force microscope is shown in Figure 3.14a. A

microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo element.
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic force micro-
scope, consisting of a piezo drive that scans the sample under the AFM tip. A laser reflects off
of the cantilever and is used to measure the detection of the tip through a feedback controller.
(b) An AFM image of strands of DNA. (Image courtesy Veeco Instruments.)

The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
the amplifier for the vertical position of the cantilever. By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of the surface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 3.14b,
which shows an AFM image of DNA.
The horizontal motion of an AFM is typically modeled as a spring–mass system

with low damping. The vertical motion is more complicated. To model the system,
we start with the block diagram shown in Figure 3.15. Signals that are easily acces-
sible are the input voltage u to the power amplifier that drives the piezo element,
the voltage v applied to the piezo element and the output voltage y of the signal

v
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u A
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ϕ
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amplifier
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Sample topography

amplifier
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Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempts to keep the can-
tilever deflection equal to its reference value. Cantilever deflection is measured, amplified
and converted to a digital signal, then comparedwith its reference value. A correcting signal is
generated by the computer, converted to analog form, amplified and sent to the piezo element.
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step response. The
top curve shows the voltage u applied to the drive amplifier (50 mV/div), the middle curve
is the output Vp of the power amplifier (500 mV/div) and the bottom curve is the output y
of the signal amplifier (500 mV/div). The time scale is 25 µs/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical positioner and the piezo
crystal.

amplifier for the photodiode. The controller is a PI controller implemented by a
computer, which is connected to the system by analog-to-digital (A/D) and digital-
to-analog (D/A) converters. The deflection of the cantilever ϕ is also shown in the
figure. The desired reference value for the deflection is an input to the computer.
There are several different configurations that have different dynamics. Here we

will discuss a high-performance system from [SÅD+07] where the cantilever base
is positioned vertically using a piezo stack. We begin the modeling with a simple
experiment on the system. Figure 3.16a shows a step response of a scanner from the
input voltage u to the power amplifier to the output voltage y of the signal amplifier
for the photodiode. This experiment captures the dynamics of the chain of blocks
from u to y in the block diagram in Figure 3.15. Figure 3.16a shows that the system
responds quickly but that there is a poorly damped oscillatory mode with a period
of about 35 µs. A primary task of the modeling is to understand the origin of the
oscillatory behavior. To do so we will explore the system in more detail.
The natural frequency of the clamped cantilever is typically several hundred

kilohertz, which is much higher than the observed oscillation of about 30 kHz. As
a first approximation we will model it as a static system. Since the deflections are
small, we can assume that the bending ϕ of the cantilever is proportional to the
difference in height between the cantilever tip at the probe and the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring–mass
system of the type discussed in Chapter 2.
Figure 3.16a also shows that the response of the power amplifier is fast. The

photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension. A
schematic mechanical representation of the vertical motion of the scanner is shown
in Figure 3.16b. We will model the system as two masses separated by an ideal
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piezo element. The mass m1 is half of the piezo system, and the mass m2 is the
other half of the piezo system plus the mass of the support.
A simple model is obtained by assuming that the piezo crystal generates a force

F between the masses and that there is a damping c in the spring. Let the positions
of the center of the masses be z1 and z2. A momentum balance gives the following
model for the system:

m1
d2z1
dt2

= F, m2
d2z2
dt2

= −c2
dz2
dt

− k2z2 − F.

Let the elongation of the piezo element l = z1 − z2 be the control variable and
the height z1 of the cantilever base be the output. Eliminating the variable F in
equations above and substituting z1 − l for z2 gives the model

(m1 + m2)
d2z1
dt2

+ c2
dz1
dt

+ k2z1 = m2
d2l
dt2

+ c2
dl
dt

+ k2l. (3.23)

Summarizing, we find that a simplemodel of the system is obtained bymodeling
the piezo by (3.23) and all the other blocks by static models. Introducing the linear
equations l = k3u and y = k4z1, we now have a complete model relating the output
y to the control signal u. A more accurate model can be obtained by introducing the
dynamics of the cantilever and the power amplifier. As in the previous examples,
the concept of the uncertainty lemon in Figure 2.15b provides a framework for
describing the uncertainty: the model will be accurate up to the frequencies of the
fastest modeled modes and over a range of motion in which linearized stiffness
models can be used.
The experimental results in Figure 3.16a can be explained qualitatively as fol-

lows. When a voltage is applied to the piezo, it expands by l0, the mass m1 moves
up and the mass m2 moves down instantaneously. The system settles after a poorly
damped oscillation.
It is highly desirable to design a control system for the vertical motion so that it

responds quicklywith little oscillation. The instrument designer has several choices:
to accept the oscillation and have a slow response time, to design a control system
that can damp the oscillations or to redesign the mechanics to give resonances of
higher frequency. The last two alternatives give a faster response and faster imaging.
Since the dynamic behavior of the system changes with the properties of the

sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities formakingAFM systems easier to use by introducing automatic tuning
and adaptation.

The book by Sarid [Sar91] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [Kit95]. The model discussed in this section is based on Schitter [Sch01].
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of describing
drug distribution (based on Teorell [Teo37]). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constants ki parameterize the rates of flow between different compartments.

3.6 Drug Administration
The phrase “Take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not so high that it will
cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.
Drug administration is a control problem. To solve it we must understand how

a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compartment
models. They go back to the 1920swhenWidmarkmodeled the propagation of alco-
hol in the body [WT24]. Compartment models are now important for the screening
of all drugs used by humans. The schematic diagram in Figure 3.17 illustrates the
idea of a compartment model. The body is viewed as a number of compartments
like blood plasma, kidney, liver and tissues that are separated by membranes. It is
assumed that there is perfect mixing so that the drug concentration is constant in
each compartment. The complex transport processes are approximated by assuming
that the flow rates between the compartments are proportional to the concentration
differences in the compartments.
To describe the effect of a drug it is necessary to know both its concentration

and how it influences the body. The relation between concentration c and its effect
e is typically nonlinear. A simple model is

e =
c

c0 + c
emax. (3.24)

The effect is linear for low concentrations, and it saturates at high concentrations.
The relation can also be dynamic, and it is then called pharmacodynamics.
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Compartment Models
The simplest dynamic model for drug administration is obtained by assuming that
the drug is evenly distributed in a single compartment after it has been administered
and that the drug is removed at a rate proportional to the concentration. The com-
partments behave like stirred tanks with perfect mixing. Let c be the concentration,
V the volume and q the outflow rate. Converting the description of the system into
differential equations gives the model

V
dc
dt

= −qc, c ≥ 0. (3.25)

This equation has the solution c(t) = c0e−qt/V = c0e−kt , which shows that the
concentration decays exponentially with the time constant T = V/q after an injec-
tion. The input is introduced implicitly as an initial condition in the model (3.25).
More generally, the way the input enters the model depends on how the drug is
administered. For example, the input can be represented as a mass flow into the
compartment where the drug is injected. A pill that is dissolved can also be inter-
preted as an input in terms of a mass flow rate.
The model (3.25) is called a a one-compartment model or a single-pool model.

The parameter q/V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. By measuring the con-
centration at a few times, the initial concentration can be obtained by extrapolation.
If the total amount of injected substance is known, the volume V can then be de-
termined as V = m/c0; this volume is called the apparent volume of distribution.
This volume is larger than the real volume if the concentration in the plasma is
lower than in other parts of the body. The model (3.25) is very simple, and there
are large individual variations in the parameters. The parameters V and q are often
normalized by dividing by the weight of the person. Typical parameters for aspirin
are V = 0.2 L/kg and q = 0.01 (L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an intracellular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/min /kg.
The simple one-compartment model captures the gross behavior of drug distri-

bution, but it is based onmany simplifications. Improvedmodels can be obtained by
considering the body as composed of several compartments. Examples of such sys-
tems are shown in Figure 3.18, where the compartments are represented as circles
and the flows by arrows.
Modeling will be illustrated using the two-compartment model in Figure 3.18a.

We assume that there is perfect mixing in each compartment and that the transport
between the compartments is driven by concentration differences. We further as-
sume that a drug with concentration c0 is injected in compartment 1 at a volume
flow rate of u and that the concentration in compartment 2 is the output. Let c1 and
c2 be the concentrations of the drug in the compartments and let V1 and V2 be the
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compartment
model. Each compartment is labeled by its volume, and arrows indicate the flow of chemical
into, out of and between compartments. (b) A system with six compartments used to study
the metabolism of thyroid hormone [God83]. The notation ki j denotes the transport from
compartment j to compartment i .

volumes of the compartments. The mass balances for the compartments are

V1
dc1
dt

= q(c2 − c1) − q0c1 + c0u, c1 ≥ 0,

V2
dc2
dt

= q(c1 − c2), c2 ≥ 0,

y = c2.

(3.26)

Introducing the variables k0 = q0/V1, k1 = q/V1, k2 = q/V2 and b0 = c0/V1 and
using matrix notation, the model can be written as

dc
dt

=

−k0 − k1 k1

k2 −k2


 c +


b00


 u, y =


0 1


 c. (3.27)

Comparing this model with its graphical representation in Figure 3.18a, we find
that the mathematical representation (3.27) can be written by inspection.
It should also be emphasized that simple compartment models such as the one in

equation (3.27) have a limited range of validity. Low-frequency limits exist because
the human body changes with time, and since the compartment model uses average
concentrations, they will not accurately represent rapid changes. There are also
nonlinear effects that influence transportation between the compartments.
Compartment models are widely used in medicine, engineering and environ-

mental science. An interesting property of these systems is that variables like con-
centration and mass are always positive. An essential difficulty in compartment
modeling is deciding how to divide a complex system into compartments. Com-
partment models can also be nonlinear, as illustrated in the next section.
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Figure 3.19: Insulin–glucose dynamics. (a) Sketch of body parts involved in the control of
glucose. (b) Schematic diagram of the system. (c) Responses of insulin and glucose when
glucose in injected intravenously. From [PB86].

Insulin–glucose Dynamics
It is essential that the blood glucose concentration in the body is kept within a
narrow range (0.7–1.1 g/L). Glucose concentration is influenced by many factors
like food intake, digestion and exercise. A schematic picture of the relevant parts
of the body is shown in Figures 3.19a and b.
There is a sophisticated mechanism that regulates glucose concentration. Glu-

cose concentration is maintained by the pancreas, which secretes the hormones
insulin and glucagon. Glucagon is released into the bloodstream when the glucose
level is low. It acts on cells in the liver that release glucose. Insulin is secreted when
the glucose level is high, and the glucose level is lowered by causing the liver and
other cells to take up more glucose. In diseases like juvenile diabetes the pancreas
is unable to produce insulin and the patient must inject insulin into the body to
maintain a proper glucose level.
The mechanisms that regulate glucose and insulin are complicated; dynamics

with time scales that range from seconds to hours have been observed. Models of
different complexity have been developed. Themodels are typically testedwith data
from experiments where glucose is injected intravenously and insulin and glucose
concentrations are measured at regular time intervals.
A relatively simple model called theminimal modelwas developed by Bergman

and coworkers [Ber89]. This models uses two compartments, one representing the
concentration of glucose in the bloodstream and the other representing the concen-
tration of insulin in the interstitial fluid. Insulin in the bloodstream is considered an
input. The reaction of glucose to insulin can be modeled by the equations

dx1
dt

= −(p1 + x2)x1 + p1ge,
dx2
dt

= −p2x2 + p3(u − ie), (3.28)
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where ge and ie represent the equilibrium values of glucose and insulin, x1 is the
concentration of glucose and x2 is proportional to the concentration of interstitial
insulin. Notice the presence of the term x2x1 in the first equation. Also notice
that the model does not capture the complete feedback loop because it does not
describe how the pancreas reacts to the glucose. Figure 3.19c shows a fit of the
model to a test on a normal person where glucose was injected intravenously at
time t = 0. The glucose concentration rises rapidly, and the pancreas responds
with a rapid spikelike injection of insulin. The glucose and insulin levels then
gradually approach the equilibrium values.
Models of the type in equation (3.28) andmore complicatedmodels havingmany

compartments have been developed and fitted to experimental data. A difficulty in
modeling is that there are significant variations in model parameters over time and
for different patients. For example, the parameter p1 in equation (3.28) has been
reported to vary with an order of magnitude for healthy individuals. The models
have been used for diagnosis and to develop schemes for the treatment of persons
with diseases. Attempts to develop a fully automatic artificial pancreas have been
hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [WT24] and Teorell [Teo37] are classics
in pharmacokinetics, which is now an established discipline with many textbooks
[Dos68, Jac72, GP82]. Because of its medical importance, pharmacokinetics is
now an essential component of drug development. The book by Riggs [Rig63] is a
good source for the modeling of physiological systems, and a more mathematical
treatment is given in [KS01]. Compartment models are discussed in [God83]. The
problem of determining rate coefficients from experimental data is discussed in
[BÅ70] and [God83]. There are many publications on the insulin–glucose model.
The minimal model is discussed in [CT84, Ber89] and more recent references are
[MLK06, FCF+06].

3.7 Population Dynamics
Population growth is a complex dynamic process that involves the interaction of one
or more species with their environment and the larger ecosystem. The dynamics of
population groups are interesting and important inmany different areas of social and
environmental policy. There are examples where new species have been introduced
into new habitats, sometimes with disastrous results. There have also been attempts
to control population growth both through incentives and through legislation. In
this section we describe some of the models that can be used to understand how
populations evolve with time and as a function of their environments.

Logistic Growth Model
Let x be the population of a species at time t . A simple model is to assume that the
birth rates and mortality rates are proportional to the total population. This gives
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the linear model
dx
dt

= bx − dx = (b − d)x = r x, x ≥ 0, (3.29)

where birth rate b and mortality rate d are parameters. The model gives an expo-
nential increase if b > d or an exponential decrease if b < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (3.29) has this property:

dx
dt

= r x(1−
x
k
), x ≥ 0, (3.30)

where k is the carrying capacity of the environment. The model (3.30) is called the
logistic growth model.

Predator–Prey Models
Amore sophisticatedmodel of population dynamics includes the effects of compet-
ing populations, where one species may feed on another. This situation, referred to
as the predator–prey problem, was introduced in Example 2.3, where we developed
a discrete-time model that captured some of the features of historical records of
lynx and hare populations.
In this section, we replace the difference equation model used there with a more

sophisticated differential equation model. Let H(t) represent the number of hares
(prey) and let L(t) represent the number of lynxes (predator). The dynamics of the
system are modeled as

dH
dt

= r H
(
1−

H
k

)
−

aHL
c + H

, H ≥ 0,

dL
dt

= b
aHL
c + H

− dL , L ≥ 0.
(3.31)

In the first equation, r represents the growth rate of the hares, k represents the
maximum population of the hares (in the absence of lynxes), a represents the
interaction term that describes how the hares are diminished as a function of the
lynx population and c controls the prey consumption rate for low hare population.
In the second equation, b represents the growth coefficient of the lynxes and d
represents the mortality rate of the lynxes. Note that the hare dynamics include a
term that resembles the logistic growth model (3.30).
Of particular interest are the values at which the population values remain con-

stant, called equilibrium points. The equilibrium points for this system can be
determined by setting the right-hand side of the above equations to zero. Letting
He and Le represent the equilibrium state, from the second equation we have

Le = 0 or H∗
e =

cd
ab − d

. (3.32)

Substituting this into the first equation, we have that for Le = 0 either He = 0 or
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Figure 3.20:Simulation of the predator–prey system.Thefigure on the left shows a simulation
of the two populations as a function of time. The figure on the right shows the populations
plotted against each other, starting fromdifferent values of the population. The oscillation seen
in both figures is an example of a limit cycle. The parameter values used for the simulations
are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125 and r = 1.6.

He = k. For Le )= 0, we obtain

L∗
e =

r He(c + He)

aHe

(
1−

He

k

)
=
bcr(abk − cd − dk)

(ab − d)2k
. (3.33)

Thus, we have three possible equilibrium points xe = (Le, He):

xe =

00


 , xe =


k0


 , xe =


H∗

e
L∗
e


 ,

where H∗
e and L∗

e are given in equations (3.32) and (3.33). Note that the equilib-
rium populations may be negative for some parameter values, corresponding to a
nonachievable equilibrium point.
Figure 3.20 shows a simulation of the dynamics starting from a set of popu-

lation values near the nonzero equilibrium values. We see that for this choice of
parameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 2.6.

Volume I of the two-volume set by J. D. Murray [Mur04] give a broad coverage
of population dynamics.

Exercises
3.1 (Cruise control) Consider the cruise control example described in Section 3.1.
Build a simulation that re-creates the response to a hill shown in Figure 3.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.
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3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (3.5) can be approximated in state space form as

d
dt


x1x2


 =


 0 1
mgh/J 0





x1x2


 +


 Dv0/(bJ )
mv20h/(bJ )


 u,

y =

1 0


 x,

where the input u is the steering angle δ and the output y is the tilt angle ϕ. What
do the states x1 and x2 represent?
3.3 (Bicycle steering) Combine the bicycle model given by equation (3.5) and the
model for steering kinematics in Example 2.8 to obtain a model that describes the
path of the center of mass of the bicycle.
3.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

−

+
v1 vo

v3

v2

RaR1

R2

C2

C1

Rb

Show that the dynamics can be written in state space form as

dx
dt

=




−
1

R1C1
−

1
RaC1

0

Rb
Ra

1
R2C2

−
1

R2C2



x +




1
R1C1

0



u, y =


0 1


 x,

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)
3.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1

Show that the dynamics can be written in state space form as

dx
dt

=




0
R4

R1R3C1

−
1

R2C2
0



x,

where the state variables represent the voltages across the capacitors x1 = v1 and
x2 = v2.
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3.6 (Congestion control using RED [LPW+02]) A number of improvements can
be made to the model for Internet congestion control presented in Section 3.4.
To ensure that the router’s buffer size remains positive, we can modify the buffer
dynamics to satisfy

dbl
dt

=

{
sl − cl bl > 0
sat(0,∞)(sl − cl) bl = 0.

In addition, we can model the drop probability of a packet based on how close we
are to the buffer limits, a mechanism known as random early detection (RED):

pl = ml(al) =






0 al(t) ≤ blowerl
ρlri (t) − ρlblowerl blowerl < al(t) < bupperl
ηlri (t) − (1− 2bupperl ) bupperl ≤ al(t) < 2bupperl
1 al(t) ≥ 2bupperl ,

dal
dt

= −αlcl(al − bl),

where αl , bupperl , blowerl and pupperl are parameters for the RED protocol.
Using the model above, write a simulation for the system and find a set of

parameter values for which there is a stable equilibrium point and a set for which
the system exhibits oscillatory solutions. The following sets of parameters should
be explored:

N = 20, 30, . . . , 60, blowerl = 40 pkts, ρl = 0.1,
c = 8, 9, . . . , 15 pkts/ms, bupperl = 540 pkts, αl = 10−4,

τ = 55, 60, . . . , 100 ms.

3.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.

m1

k1

m2

c1

k2 c2

F

F

Show that the dynamics can be written as

(m1 + m2)
d2z1
dt2

+ (c1 + c2)
dz1
dt

+ (k1 + k2)z1 = m2
d2l
dt2

+ c2
dl
dt

+ k2l.

Are there parameter values that make the dynamics particularly simple?
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3.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model

Vb
dcb
dt

= q(cl − cb) + qiv , Vl
dcl
dt

= q(cb − cl) − qmax
cl

c0 + cl
+ qgi ,

where Vb = 48 L and Vl = 0.6 L are the apparent volumes of distribution of
body water and liver water, cb and cl are the concentrations of alcohol in the com-
partments, qiv and qgi are the injection rates for intravenous and gastrointestinal
intake, q = 1.5 L/min is the total hepatic blood flow, qmax = 2.75 mmol/min and
c0 = 0.1 mmol/L. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (Population dynamics) Consider the model for logistic growth given by equa-
tion (3.30). Show that the maximum growth rate occurs when the size of the pop-
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fishery can be de-
scribed by the following simple model:

dx
dt

= f (x) − h(x, u), y = bh(x, u) − cu

where x is the total biomass, f (x) = r x(1− x/k) is the growth rate and h(x, u) =
axu is the harvesting rate. The output y is the rate of revenue, and the parameters a,
b and c are constants representing the price of fish and the cost of fishing. Show that
there is an equilibrium where the steady-state biomass is xe = c/(ab). Compare
with the situation when the biomass is regulated to a constant value and find the
maximum sustainable return in that case.


