Project in Automatic Control FRT090

2011

Department of Automatic Control Faculty of Engineering Lund University

Projects in Automatic Control

- Team effort
 - Collaborative problem solving
- Get practical experience
- Apply course knowledge
 - Modeling
 - Identification
 - Control design
 - Implementation

Course plan

- w1 Form groups and planning
 - Tuesday March 15th group announcement
 - Friday March 18th deadline for project plans
 - Tutorials
- w2-w5 Project work
 - Feedback seminars 1 and 2
- 3 weeks of holiday and exams
- w6-w7 Project work
 - Feedback seminar 3
 - Presentations in w7 or the week after

Project infrastructure

- Version control system Subversion
 - Version control
 - Collaborative development
 - http://subversion.tigris.org/
- Project management Trac
 - Wiki documentation
 - Ticket-driven development
 - <u>http://trac.edgewall.org/</u>
 - Tutorial Wed. March 16 10:15-12:00, Lab B

Project plan

- An overview of the project.
- Descriptions of the key parts of the project, including materials and methods to be used.
- A decomposition of the project into sub tasks and a suggested allocation of the project resources to key tasks.
- A time plan

Hints for project planning

- Break project into manageable subtasks
- Establish dependencies between subtasks
- Estimate time required each subtask (manhours/days)
- For each week estimate how many hours every member of the team will work
- Plan deadlines for each subtask using the estimates above
- Put any spare time you might have in the end of the schedule, not the beginning!
- Every week follow up on your progress compared to your timeplan, and reschedule if you are failing behind.

Feedback seminars

- Three feedback seminars with different themes
 - Modeling (April 6th 10:15-12:00)
 - Design (April 15th 10:15-12:00)
 - Implementation (May 18th 10:15-12:00)
- Hand in written mini-report two days before seminar
- All groups prepare presentations
 - Choices of methods
 - Results
 - Lessons learnt
- 3-4 groups get to present
- Emphasize feedback between groups and knowledge transfer

Examination

- Complete project task
- Active participation in feedback seminars
- Oral project presentation
- Participation in demo session
- Written report

Project allocation

- Course participants submit:
 - Desired projects
 - Rank first, second and third
 - Proposals for project groups
 - March 14th (today!)
 - Send e-mail to johan.akesson@control.lth.se
- Groups and projects announcement.
 - March 15th (tomorrow!)
 - See the course home page

1. Lego Robot with Modelica/ Dymola

- Build a self-balancing robot with Lego Mindstorms
- Physical modelling using Modelica
- Model calibration
- Control design
- Automatic code generation
- User interaction and animation
- Get in touch with the industry

2. Lego NXT + Android

- Design and build self-balancing robot using Lego
- Implement controller
 Android on NXT, several language options
 - NQC, Java
- Receive reference inputs over Bluetooth

- Write Android application to control the NXT over BT
- - Linux based Open Source O/S
 - Smartphones/tablets
 - "Java"-based application layer

3. LEGO Unicycle

- Balance in the forward direction with a wheel on the ground
- Lateral balance with an inertia wheel
- State estimation with gyros and accelerometers
- Programming with e.g. NXC

http://www.youtube.com/watch?v=OnRV-ggJmQ4

http://www.youtube.com/watch? v=mJJeb3cvwjY&feature=related

4. Servo controlled laser tracker

- Tracking platform built form laser pointer and RC servos
- Control based on visual feedback
- Implement on AVR
- Attempt to track moving target (e.g. paper aeroplane)
- Automatic calibration

5. Nonlinear MPC of pendulum

- Nonlinear MPC control of linear pendulum, using pre-generated swing-up trajectories
- Challenge is to shorten optimization time
- Prototype in Python, final implementation in C++

6. Inertial Measurement Unit, IMU

- Combine accelerometer/ gyro measurements to try and estimate movement/ position
- Evaluate performance/ limitations

- Key topics
 - Rigid body dynamics
 - Sensor fusion / Extended Kalman Filter
 - Quaternions
 - Embedded Cprogramming, Atmel AVR microcontroller.

7. Quadcopter

- System identification
- Use a joystick or (your own) Android phone as a remot control
- Path tracking
- C programming API

8. Networked Control over PROFINET

TrueTime

Simulink toolbox for simulating networked embedded control systems

Developed here

PROFINET

Fieldbus protocol from Siemens

Time-triggered + event-driven communication

Supported by TrueTime

"Cutting-the-circle" benchmark

NC machine Used in the EC CHAT project Simulink model available

Task

tudents

Controller implementation Evaluation of control performance when control loop closed over PROFINET Implement delay compensation strategies

Two person project - simulation only

9. Localization of robot

- Localization of mobile robot
- Robot control
- Sensor communication
- Signal processing
- AVR C programming

