
Process Control

Laboratory Exercise X

Implementation of a Batch Process Control System

Department of Automatic Control

Lund University

Last update August 2011

Figure 1 The batch reactor.

1. Introduction

In this laboratory exercise you will implement a sequential control system for a batch

reactor process, see figure 1. You will also implement a discrete PI controller for

controlling the temperature of the reactor. The development of the control system

will be made in JGrafchart, a graphical programming language implemented in Java

and developed at the department. The control system will first be tested against a

simulation and then evaluated against the real process.

The process to be controlled is a batch reactor, which is to be run in the following

way: First an amount of reactant A is added with the use of a pump. Then the reactor

is heated and an endothermic reaction starts, which turns A into the product B. When

the reaction is ready the reactor is emptied using another pump. Once the reactor is

empty it needs to be cleaned before the next batch can be made. In the laboratory

exercise water is used as the reactant and product. An electric cooler simulates the

endothermic reaction.

1



Preparations

Before the laboratory exercise you should have read this manual and solved the

preparatory exercises. Make sure to study and understand the introduction to JGrafchart

in section A, prior to attending the lab.

2. Getting started

Login as lab_batch, no password.

Open a terminal window and start JGrafchart with the command JGrafchart.

Rather than starting from scratch, open start.xml in JGrafchart, it contains some

definitions and structure. You should now have the same windows as in figure 2.

Finally, ensure that the process is connected to a 230 V socket and to the lab PC via

serial cable. There is a switch on the side of the process. Make sure it is switched on.

A LED at the front of the process is lit when the process is on. If the LED is green

everything is OK. If it is red, press the reset button on the side of the process. If the

LED still does not turn green, contact the lab assistant.

3. Laboratory Equipment

The process consists of a small tank with an electrical heater. It has a number of

measurement and control signals, which are tied to variables in the Top workspace of

the application in JGrafchart.

The electrical heater is on when the boolean variable Heat is 1 (true). In the bottom

of the tank there is a cooler, which is used to simulate the reaction. The cooling is on

when the boolean variable Cool is 1. An agitator in the tank makes sure there are no

temperature gradients in the liquid. The agitator is started using the boolean variable

Agitator. There is one pump for filling and one for emptying the tank. They are

controlled using the boolean variables InPump and OutPump respectively.

It is also possible to start or stop the pump, cooler and agitator from the Client

OpCom window shown in figure 2(d).

There are two real variables connected to transmitters in the process. The Level

variable is in the range 0–1, corresponding to 0–10 V from the level sensor. A larger

number corresponds to higher water level. Temp is in the range 0–100, which corre-

sponds to 0–100 ◦C.

The process has some interlocks built in, e.g. it is not possible to heat the tank if

the level is too low. In the case something prohibited takes place the process sets the

Error signal variable to 1 and the LED on the front of the process turns red. If this

happens, try to resolve the cause and then press the reset button at the side of the

process. Ask the lab assistant if this fails.

4. Modeling and Simulation

We will control two state variables in the batch reactor: the water level and the tem-

perature of the water.

2



(a) JGrafchart with the Top workspace of the application showing.

(b) Plotter

(c) Tank animation (d) Client OpCom

Figure 2 Windows of the graphical user interface.

3



4.1 Water Level Dynamics

Let us denote the water level as a function of time with h(t) in meters. Mass conser-

vation gives the differential equation

A
dh

dt
= qin−qout [m3/s]. (1)

Here qin [m3/s] is the flow of water from the in-pump and qout [m3/s] is the flow

from the out-pump. The tank cross-section area is A = 0.062π m2. As the dynamics

are simple there will be no need for advanced control, simple on/off control of the

pumps will suffice. The pumps have a maximum capacity of 15 l/min, but this will

not be fully exploited. The water level measurement from the process is normalized,

h(t)/hmax, so that it becomes a number between 0 and 1 in JGrafchart.

4.2 Water Temperature Dynamics

Let us denote the temperature with T (t) [◦C]. In our simple model we will assume the

temperature is uniform throughout the tank. This is not completely true, but we will

use an agitator to make this assumption close to reality. The temperature dynamics

are modeled by energy balance, described below. The combined specific heat of the

water and the tank are represented by the constant c [J/kg◦C] and their combined

mass is denoted m [kg]. The heat conduction between the tank and room is modeled

by k [W/◦C]. Further, there is a heat source qheat [W] and a heat sink qcool [W]. The
balance equation becomes

mc
dT

dt
= k · (Troom−T )+qheat −qcool(Troom−T) [W]. (2)

The room temperature Troom is approximately 20◦C. Notice that if the heater and

cooling is off the water temperature T will tend to Troom, which makes sense. (2) is

only valid for temperatures below the boiling point and above the freezing point.

The cooling qcool(T ) is provided by a Peltier thermoelectric element. Its efficiency

depends on the temperature difference between the water and the room. It gets more

efficient as the temperature of the water increases. When the temperature difference

is zero, the cooling is about 40 W. In the working temperature range, the dependence

is well described by a linear relation. The cooling is included in the lab to simulate

the endothermic chemical reactions.

The heater can deliver a maximum of qheat = 150 W. It will be scaled according to

qheat = 150
u

100
[W],

where u is our control signal and is a dimensionless number between 0 and 100. u is

the output from the controller we will design in JGrafchart.

As seen in (2) there are many physical parameters to determine. However, for our

purpose there is no need to measure each single parameter. Instead, as we know the

structure of the model, we can fit the model to some experimental data and get a

reasonable result. Step response experiments yield

τ · Ṫ +T = κ1 + κ2 ·u [◦C] (3)

when the cooling is on, at normal room temperature, and the level is approximately

one cm over the agitator. The open-loop time-constant τ is 1075 seconds. The other

constants are κ1 = −4.33◦C and κ2 = 1.74◦C.

4



4.3 Simulation

As the temperature dynamics of the real system are relatively slow with a time-

constant of 1075 s, we will use a simulated model that runs ten times as fast during

the design phase of the controller. This avoids too much tedious waiting. The anima-

tion window, see figure 2(c), shows the status of the simulated tank. It is also updated

when running the real process.

The heat control signal u and the temperature T are plotted in another window, see

figure 2(b). The plots should be used to evaluate the controller performance. The

plotting can be halted by clicking Stop Plot in Client OpCom, see figure 2(d), and

started anew by clicking Start Plot.

JGrafchart communicates both with the real and the simulated process. JGrafchart

decides whether to simulate or talk to the real process by means of the boolean vari-

able Simulation in the Top workspace of the JGrafchart application, shown in fig-

ure 2(a). If Simulation is 1 the simulated model, running ten times as fast as the

real process, provides your controller with measurement signals. If Simulation is

0 the real world process is used. The necessary time-scaling of parameters is done

automatically. We will see later how to toggle this mode.

5. Sequential Control

In this part of the laboratory exercise you will develop a sequence for controlling

the batch reactor. The sequence should be described as a Grafcet diagram and then

translated to JGrafchart. The sequence will be tested against the simulated process

and then evaluated against the real process.

Sequential Control of the Batch Reactor

The reactor is making batches over and over again. The making of one batch is out-

lined below. All buttons and variables live in the Top workspace, if nothing else is

explicitly stated.

1. The operator starts the batch by pressing the StartSequence button, which

sets the boolean variable Start to 1.

Note: Start is automatically reset by the Logic workspace.

2. Once the start button has been pressed, the reactor should be filled using the

in-pump, which is running as long as the boolean variable InPump is 1. The

filling should be stopped when the boolean variable Sensor.Full (from the

Sensor workspace, which is a sub-workspace of Top) becomes 1.

3. As soon as the in-pump is stopped, the agitator should be started by setting

Agitator to 1 and the heating controller should be turned on by setting Con-

trol_On to 1.

4. Heating control and agitation should be stopped when the operator presses the

button StopHeating, which assigns the boolean variable StopHeat the value

1. It is the responsibility of the operator to wait until a desired temperature is

reached, before pressing the button. When heating and agitation have stopped,

the tank should automatically be emptied by means of the out-pump, controlled

by the boolean variable OutPump. The out-pump should be turned off once

Sensor.Empty becomes 1.

5



5. The tank needs to be automatically Cleaned In Place (CIP) before the batch

sequence can be repeated. The CIP procedure consists in flushing and cooling

the tank: The tank should be filled until the variable Sensor.Full becomes 1.

Subsequently, the agitator is started and the cooler is activated by setting Cool

to 1. When temperature has dropped to 25◦C, agitations and cooling should

stop. Temperature measurements in units of ◦C are available through the vari-

able Temp. Next, the out-pump empties the tank until Sensor.Empty becomes

1. Finally, the out-pump is turned off. After this, execution should return to the

start state, where the process waits until the operator presses the start button

anew.

Note: It might happen in simulation, as well as in the real process, that the temper-

ature is below 25◦C already at the beginning of the CIP step. If this is the case, the

CIP step will only involve flushing of the tank.

Preparation Exercise 5.1 Draw a Grafcet diagram (pen and paper), which de-

scribes the sequence above. Use a macro step to implement the CIP.

JGrafchart is different from the Grafcet standard. You need to make some adjustments

to the sequence to be able to use it in JGrafchart, cf. section A.

Preparation Exercise 5.2 Translate your Grafcet sequence in Preparation Exer-

cise 5.1 to the programming language syntax of JGrafchart (still pen and paper). It

means that in this exercise you should write (draw) the exact code that is necessary

to run the control system. Use the exact names of the variables mentioned above. See

section A for details of the JGrafchart language. Use the provided skeleton, shown in

the left half of figure 2(a).

Note: It is recommended that you use the blocks present in the skeleton. However, it

is fully possible to add or remove blocks and connections.

Note: Variables in sub-workspaces are accessible with the dot-notation, e.g. the Full

variable in the Sensor workspace is accessed with Sensor.Full. You can write

Sensor.Full in the body of the CIP macro step too since JGrafchart uses lexical

scoping and automatically looks in the enclosing workspace if there is no match

locally.

Programming and Simulation of the Control Sequence

Exercise 5.3 Implement a discrete level sensor in the Sensorworkspace. A workspace

is opened by right-clicking on it and selecting Show/Hide Body. The contents of

the Sensor workspace template, shown in figure 3, should now be visible in a new

window. Your task is to program a JGrafchart sequence, setting the boolean vari-

ables Full and Empty, using the real variable Level (which is defined in the Top

workspace and available in the Sensor workspace by its name, Level). The Full

variable should be set to 1 if and only if Level >= 0.28 and Empty should be 1 if

and only if Level <= 0.025.

Exercise 5.4 Implement your sequence from Preparation Exercise 5.2. Test it in

simulation. Compile the program by selecting Compile from the Execute menu

(same as the monkey wrench in the toolbar). Start the simulation by selecting Exe-

cute from the same menu (or the sign with a right-arrow in the toolbar). Don’t forget

6



Figure 3 Contents of the Sensor workspace template

to press the StartSequence button to start one batch, and the StopHeating button

to start CIP.

Note: Execution is stopped by selecting Stop from the Execute menu.

Note: You have to stop, re-compile, and execute each time you make changes.

Note: The boolean variable Simulation, found in the Top workspace, should be set

to 1, which is the default. If you have changed it, press the Sim_On button when your

program is running.

Evaluation using the Real Process

When the sequence gives a satisfying result in simulation it is time to try it on the

real process.

Exercise 5.5 Make sure that the computer and the process are connected and that

the LED on the front of the process is green. Set the value of Simulation (Top

workspace) to 0 by clicking the Sim_Off button workspace) during execution to use

the real process. You might need to calibrate the level sensor, which you have im-

plemented in the Sensor workspace. The Empty level should correspond to no (or

very little) water in the tank and the Full level should correspond to water approxi-

mately 2 cm above the agitator blades. Make adequate modifications in your Sensor

workspace for this to happen and evaluate the sequence on the real process.

Note: To see the real process values in the Plotter you also need to click Stop Sim-

ulation in Client OpCom.

6. Control of the Temperature

Until now, the temperature has been controlled by means of a Proportional controller

(P controller) with proportional gain 1000, making it behave like an on/off controller.

We will now investigate how control performance is affected by varying the pro-

portional gain of the P controller. Subsequently, the controller will be extended to a

Proportional Integrating (PI) controller in order to achieve better control performance

(in terms of tracking, disturbance rejection and control signal activity).

P control

The Topworkspace holds the sub-workspace PID, containing the macro step P_Controller,

in which a P controller is implemented. Make sure you understand its implementation

prior to proceeding.

The PIDworkspace also contains the PI_Controllermacro step and logics to direct

execution to either the P or PI controller. The PI_Controller step will be handled

later.

7



Exercise 6.1 Turn simulation back on. Study how the gain K of the P controller

influences the heating behavior. Use K = 4, 15, 200. Set the reference signal Tref

to 40 ◦C. Try to explain the observed behavior.

Note: Some of the variables of the PID workspace are not used in this lab, since we

are not interested in a derivative part. Why are we not interested in derivative action?

PI control

For processes working around a stationary point corresponding to non-zero input

signal, P control results in a stationary control error. This error can be decreased by

increasing the proportional gain. However, this is done at the expense of stability

margins and noise suppression. An attractive alternative to increasing the gain is to

introduce an integrator in the controller.

A continuous time PI controller has the transfer function:

U(s) = K

(

1+
1

sTi

)

E(s)

where E(s) = Yr(s)−Y (s). The signals and constants are:

• U control signal

• Y process output

• Yr reference

• E control error

• K proportional gain

• Ti integral gain

To be able to implement this controller in a computer, the integrating parts must be

replaced by a discrete time approximation. Here this is done by assuming constant

control error between sample points. Introducing this approximation, one obtains the

following pseudo-code implementation (running once per sample period):

Ppart = K*(r-y)

v1 = Ppart + Ipart

if v1 <= umin:

u = umin

else if v1 >= umax:

u = umax

else:

u = v1

Ipart = I_Old+K*h/Ti*(r-y)

Preparation Exercise 6.2 Implement the PI algorithm in JGrafchart (pen and pa-

per). Use Temp for the latest measurement (y) of the temperature. For parameters, use

the names K, Ti, h. Calculate the nominal control signal v1 as the sum of the terms

Ppart and Ipart, which represent the internal values of the controller’s proportional

and integral parts.

The P controller used until now, provides the blocks and interconnections needed for

your PI implementation. Its JGrafchart implementation is shown in figure 5.

8



Figure 4 Contents of the PID workspace

Exercise 6.3 Implement your PI controller from Preparation Exercise 6.2 in the

designated macro step in the PID workspace, see figure 4.

Note: The PI macro step already contains the P controller shown in figure 5.

Note: Notice that the temperature controller will only start if the boolean variable

Control_On is 1, and that the P controller (as opposed to the PI controller) is used if

the boolean variable I_On is 0. To manipulate I_On, use the I-Part On and I-Part

Off buttons.

Test your PI controller

Exercise 6.4 Simulate the system with a PI controller parametrized by K = 15,

Ti = 2000, Td = 0 and h = 20. Study the behavior of the system. What happens if the

control signal saturates?

In order to avoid the phenomenon mentioned above, a term h/Tr*(u-v1), where

Tr is a positive tracking constant, can be added, when updating Ipart. This term

prevents Ipart from continue growing if the control signal saturates.

9



Figure 5 P controller for the P_Controller macro step

Notice that the final control signal u is computed from a nominal control signal v1 in

the pseudo-code for the PI controller.

Preparation Exercise 6.5 The phenomenon mentioned above is called integrator

windup. Why does it occur and how does it affect the system? Modify your PI con-

troller (pen and paper) to include integral anti-windup.

Exercise 6.6 Change your PI controller sequence in JGrafchart to include the anti-

windup. The parameter Tr is available on the Control workspace. What happens to

the control signal when Tr=200, 750, and 2500?

7. The Final Result

Exercise 7.1 As a final part of the lab, run the entire batch sequence, including the

windup-protected PI controller, on the real process. Use the controller parameters:

K = 15

Ti = 2000

Tr = 750

How reliable is the model of the system used for simulation?

10



8. Conclusions

During the laboratory exercise we have developed a small control program for a batch

reactor. The program contains both a sequential part and a PI controller for temper-

ature control. This mix of control loops and logic is very common and can be found

in all from highly complex industrial processes to electric domestic appliances such

as laundry machines.

A. Introduction to JGrafchart

JGrafchart is a freeware function chart editor and execution environment developed

at the Department of Automatic Control, Lund University.

In this lab, only a subset of all elements in JGrafchart are available, and only what

you need to know to be able to do the lab is described in this section.

A.1 Programming in JGrafchart

Programming in JGrafchart is done by drag-and-drop from the palette to a workspace.

The palette contains steps, transitions, variables, and lots of other elements. It is pos-

sible to select, delete, copy, cut, and paste objects in the standard fashion. Function

chart objects are connected by click-dragging the stubs. The rules of Grafcet have to

be followed, e.g. a step cannot be connected to a step.

Figure 6 JGrafchart with palette (left) and the Top workspace of an application (right).

11



A.2 Documentation

For more detailed information, use the documentation for JGrafchart which can be

opened with Online Help in the Help menu. The documentation for an object can

also be consulted interactively by using the Object Help feature on it, i.e. the speech

bubble with an i in the toolbar or Object Help in the Help menu.

A.3 Execution

JGrafchart applications are executed periodically. Every period (scan-cycle) three op-

erations are performed:

1. Read digital and analog inputs.

2. Execute one scan of the application.

3. Update variables subject to normal actions.

Before an application can be executed it must be compiled. This is done by selecting

Compile in the Execute menu or in the toolbar. Compilation errors are indicated by

red text color of the condition expression/step actions. Error messages are also written

to the message list.

Two types of problems may arise during compilation: syntactic errors and semantic

errors.

For example, the condition expression y OR z would generate a syntactic error since

two consecutive variables, i.e. y and OR, are not allowed. What the programmer prob-

ably meant here was y | z.

Semantic errors means that the syntax is correct but what you are trying to do is not

possible. One example is trying to assign to an input. Another example is if name

lookup fails, e.g. if there is not variable named y or z in the previous example.

A.4 Grafcet Elements

In this section a selection of Grafchart elements are described.

Steps The name of a step is located on the left hand side and can be changed by

click-and-edit.

Step actions are entered as text in the dialog that is opened with Edit in the step’s

context menu. Actions are separated by semi-colons.

Four different action types are supported:

• Enter action (Stored action): The action is executed once when the step be-

comes active.

S "action";

• Periodic action: The action is executed periodically, once every scan-cycle,

while the step is active.

P "action";

• Exit action: The action is executed once immediately before the step is de-

activated.

X "action";

12



• Normal action (Level action): A normal action is used to associate the truth-

value of a boolean variable with the activation status of the step.

N "boolean variable";

The expression syntax is similar to Java. One important difference is that the literals

0 and 1 are used both for the boolean values true and false and for the integer values

0 and 1. It is the context that decides the interpretation.

Supported operators are: +, -, *, /, ! (negation), & (and), | (or), == (equal), != (not

equal), <, >, <=, >=.

Expressions may contain name references to variables. JGrafchart uses lexical scop-

ing based on workspaces. For example, a variable named Y on workspace W1 is dif-

ferent from a variable named Y on workspace W2. References between workspaces

are expressed using dot-notation. For example, a step action in a step on workspace

W1 can refer to the variable Y on workspace W2 with W2.Y.

The expression "stepName".x returns 1 if the step is active and 0 otherwise. The

expression "stepName".t returns the number of scan cycles since the step was last

activated, or 0 if it is not active. The expression "stepName".s returns the time, in

seconds, since the step was last activated, or 0 if it is not active.

Initial Steps Initial steps are steps that get actived when the execution of the func-

tion chart starts.

Transitions Transitions are associated with conditions or events that should be true

in order for the function chart to change state, see figure 7. Click on the condition to

edit it.

Figure 7 Transition

The condition expression has the same syntax as expressions in step actions and

should return a boolean value.

Macro Steps A macro step represents a hierarchical abstraction and contains its

own (sub-)workspace, see figure 8. The sub-workspace is opened/closed with Show/Hide

Body in the context menu. The first step in the macro step is represented by a special

enter step. Similarly the final step of the macro step is represented by a special exit

step. Both the enter step and exit step are otherwise ordinary steps and may, e.g., have

actions.

13



Figure 8 Macro step M2 and its subworkspace containing the enter step S1, the exit step S2

and a transition.

Variables There is a variable type for each of the primitive data types: real, boolean,

integer, and string. Each variable has a value and a name, both can be changed by

click-and-edit.

Action Buttons An action button performs actions when clicked during execution,

see figure 9. The syntax is the same as for steps, except that only S actions are al-

lowed.

Figure 9 An Action Button with its action.

Workspace Object A Workspace Object contains a subworkspace and is typically

used to structure the application.

Text Text objects are commonly used as comments. The text is changed with click-

and-edit.

14


