
Department of
AUTOMATIC CONTROL

FRT 041 System Identification
Final Exam October 26, 2015, 2pm - 7pm

General Instructions
This is an open book exam. You may use any book you want, including the slides from the
lecture, but no exercises, exams, or solution manuals are allowed. Solutions and answers to
the problems should be well motivated. The exam consists of 8 problems. The credit for each
problem is indicated in the problem. The total number of credits is 25 points. Preliminary
grade limits:

Grade 3: 12 – 16 points
Grade 4: 17 – 21 points
Grade 5: 22 – 25 points

Results
The results of the exam will be posted at the latest November 2, 2015 on the note board on
the first floor of the M-building.
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1. In Figure 1 is shown an excerpt of the input and output signals from two different
experiments on the same unknown system, which could be modeled as

yk = b1uk−1 +b2uk−2 + ek, k ≥ 3 (1)

where ek ∼ N(0,1). Both experiments were run for a length of N = 1000.
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(a) Excerpt from experiment 1
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(b) Excerpt from experiment 2

Figure 1: Excerpts from the two experiments in problem 1

a. Use the data below and calculate the least-squares parameter estimates. Explain the
different results in the two experiments. Which results should you trust? (2 p)

Experiment 1 Experiment 2
∑

N−1
i=2 u2

k : 997 1075.9

∑
N−1
i=2 ukuk−1 : 996 −1.9

∑
N−1
i=2 uk−1uk−1 : 996 1079.8

∑
N−1
i=2 ukyk+1 : −221.7 339.0

∑
N−1
i=2 uk−1yk+1 : −222.5 −529.5

b. Motivate why using a maximum-likelihood estimator will give, or not give, the same
results as using least-squares in this case. (2 p)

Solution

a. The system has an obvious regressor form yk = ϕk−1θ +ek, which enables us to define
the matrices

Y = Φθ +E =

 y3
...

yN

=

 u2 u1
...

...
uN−1 uN−2

(b1

b2

)
+

 e3
...

eN


Now we get

Φ
T

Φ =

(
∑

N−1
i=2 u2

k ∑
N−1
i=2 ukuk−1

∑
N−1
i=2 ukuk−1 ∑

N−1
i=2 uk−1uk−1

)
Φ

TY =

(
∑

N−1
i=2 ukyk+1

∑
N−1
i=2 uk−1yk+1

)
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G(z)
u y

Figure 2: The input signal u is fed to the linear system G.

The least-squares estimate is then given by

θ̂ = (ΦT
Φ)−1

Φ
TY

Inserting the values given we get the parameter estimates θ̂1 = (0.79,−1.02) and
θ̂2 = (0.31,−0.49), which are clearly different although the experiments were done
on the same system. This is because the input signal in experiment 1 is a step function,
which is only persistently exciting of order 1, meaning that we can’t identify the two
parameters. By looking at the figure we can see that there clearly is more variations
in the input signal for experiment 2, meaning that we can excite the system enough
to identify both parameters (as a note, the input is white noise, which is persistently
exciting up to arbitrary high order).

b. Since the noise is Gaussian with known mean and covariance, we get the following
maximum-likelihood estimator:

θ̂ = argmax
θ̄

L(θ̄) = argmax
θ̄

N

∏
i=3

1√
2π

exp(−1
2
(yi−b1ui−1−b2ui−2)

2)

= argmax
θ̄

(
√

2π)−N+3 exp(−1
2

N

∑
i=3

(yi−b1ui−1−b2ui−2)
2)

where we see that the only part that depend on the parameters is the sum in the expo-
nential, meaning that the ML estimator is given by the solution to

argmin
θ̄

N

∑
i=3

(yi−b1ui−1−b2ui−2)
2

which is the same cost function that is minimized by the least-squares estimator.
Hence, the two methods produce identical results in this case.

2.

a. Consider a series of identification problems performed in the setting depicted in fig-
ure 2. It is known that the variance of the measurement noise is quite small compared
to the variance of the input signal. Three different systems G1,G2,G3 have been fed
a PRBS signal u, and estimates of the respective output spectra is shown in figure 3.
The three systems are to be modeled using ARX/ARMAX models. Which kind of
model, and which order of the polynomials, would you use for the systems? To assist
you in your choice, the autocorrelation functions of the output are shown in figure 4.
Provide an analysis of the information provided by the plotted estimates, what infor-
mation do they convey about the order of the systems? If you deem that the informa-
tion provided by the spectral estimates and autocorrelation functions are insufficient
for determining your choice of model, describe in a short and concise way how you
would proceed to further analyze the obtained identification data.

(3 p)
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Figure 3: Spectral estimates of y1,y2,y3
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Figure 4: Autocorrelation function estimates for y1,y2,y3

b. Consider now a setting where the system to be identified has a nonlinear function
acting on the input, see figure 5. Describe how you would proceed before drawing
conclusions from the estimated output spectra. (1 p)

c. The two spectra S1,S2 depicted in figure 6 represent the same signal, but are estimated
using two different methods, of which one is the regular periodogram. Describe which
spectra is likely to be estimated using the periodogram and why. What do you think
has been done differently during in the other spectral estimate? Also describe the
problems related to spectral estimation using the periodogram, what problems may
occur and why?

Gf (u)
u y

Figure 5: A nonlinear function f (u) acts on the input signal to the linear system G
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Figure 6: Spectral estimates for problem c

(2 p)

Solution

a. • System G1 seems to have two blocked frequencies, the blocked zero frequency
indicates at least one zero and the blocked frequency at 0.75 indicates a pair of
zeroes in the transfer function from u to y.

• System G2 seems to have one blocked frequency, which indicates one pair of
zeroes in the transfer function from u to y. G2 further seems to have one resonant
frequency which indicates a pair of poles in the transfer function from u to y.

• System G3 seems to have two resonant frequencies, which indicates two pairs of
poles in the transfer function from u to y.

To further analyze the data, the autocorrelation function is useful, y1 seems to have
no significant autocorrelation in lags higher than four, which indicates that there is no
feedback in the system and supports the previous hypothesis of two pairs of zeroes.
Both y2 and y3 seems to have periodic ACFs, indicating the presence of feedback
(poles/infinite impulse response) in the system.
The information provided is insufficient to say much about the characteristics of the
noise. To analyze the data further, estimates of the cross correlation function, impulse
response estimates and estimates of the partial autocorrelation function could be per-
formed. One can also calculate some information criterion, such as AIC or FPE, and
use this to support ones choice of model order.
To summarize
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• G1 comes from the process yk = uk − uk−1− 0.5uk−2 + uk−3, as supported by
spectrum and autocorrelation function.

• G2 comes from the process yk − 0.5yk−1 + 0.9yk−1 = uk − 1.5uk−1− uk−2, as
supported by spectrum and partly by the autocorrelation function.

• G3 comes from the process yk−1.2yk−1+0.93yk−2−0.73yk−3+0.61yk−4 = uk,
as supported by spectrum and partly by the autocorrelation function.

All systems are thus ARX models (it could be argued that the first system is an MA
system where the moving average is over the input). If unsure, information criteria
should be used to determine the proper model order.

b. In the presence of a nonlinearity, one must ensure oneself that the linear cross coher-
ence spectrum is strong enough to allow identification of linear models. If this is not
the case, nonlinear techniques must be adopted.

c. The spectrum S1 is estimated using the periodogram. This can be seen from the higher
level of spectral leakage which arises due to the finite measurement sequence and
rectangular window. The second spectrum is estimated using Welch’s method where
a window (Hamming) has been applied to the data. This reduces the effect of the
leakage, but does not remove it completely. It further reduces the frequency resolu-
tion in the estimate, as evidenced by the complete disappearance of the small peak
at 20.5Hz. This peak is barely visible in the periodogram, but completely gone in
the Welch estimate. Windowing also masks spectral content below the sidelobe at-
tenuation. Choosing different windows will enable you to make tradeoffs between
resolution (e.g., using a rectangular window) and sidelobe attenuation.

3. You are trying to estimate the parameters from the moving average process

y(k) = auk−1 +buk−3 + ek. (2)

where {ek} is a zero-mean white noise process with variance σ2 and {uk} is a zero-
mean weakly stationary process with autocovariance function Cuu(τ) = (1/2)|τ| that
is uncorrelated with {ek}.
We are interested in finding the least-squares estimate for θ̂ = ( â b̂)T . Does the
parameter estimate have an asymptotic distribution? If so, what is the distribution and
its parameters? (4 p)

Solution
The model (2) can be written as yk = ϕT

k θ + ek, where θ = ( a b) and

ϕ
T
k = (uk−1 uk−3 ) .

Given N samples of observed input data the regression matrix is

ΦN =


u3 u1

u4 u2
...

...
uN+2 uN

 .

Now
1
N

Φ
T
N ΦN =

1
N

(
∑

N+2
k=3 u2

k ∑
N+2
k=3 ukuk−2

∑
N+2
k=3 ukuk−2 ∑

N
k=1 u2

k

)
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so, due to ergodicity we have asymptotically,

lim
N→∞

1
N

Φ
T
N ΦN = E(

1
N

Φ
T
N ΦN) =

(
Cuu(0) Cuu(2)
Cuu(2) Cuu(0)

)
=

(
1 0.25

0.25 1

)
.

Thus the regression matrix is invertible when the number of samples goes to infinity.
This fact together with the fact that the input signal is uncorrelated with the noise
signal ensures a consistent estimate. Therefore E(θ̂) = θ and the central limit theorem
(6.98) on page 121 in the book gives the asymptotic distribution

θ̂ ∼ AsN(θ ,
σ2

N
Σ)

where

Σ =

(
1 0.25

0.25 1

)−1

=
16
15

(
1 −0.25

−0.25 1

)

4. We want to estimate the parameters a and b in the system

yk +ayk−1 = buk−1 + vk. (3)

Due to peculiarities of the system the identification must be performed under propor-
tional feedback. Determine if the parameters are identifiable under the follow feed-
back laws:

a. uk =−kpyk (1 p)

b. uk =−kpyk−1 (1 p)

Solution

a. The closed loop system is yk =−(a+bkp)yk−1 +vk. The parameters a and b can thus
not be identified since they only affect the system as a sum.

b. Now the closed loop system is yk = −ayk−1− bkpyk−2 + vk and the parameters are
identifiable, no problem.

5. Consider the differential equation of a mechanical system

mq̈ =−kq+ f (4)

with position coordinate q, force f , mass m, and stiffness k. Assume that q and f are
available to measurement.

Formulate a regression model by means of a change of variables to the operator λ =
1/(1+sτ), thereby showing that it is possible to identify the parameters m and k from
measurements of q and f . (3 p)

7



Solution
From λ = 1/(1+ sτ) we find that s = (1−λ )/τλ . Application of the Laplace trans-
form to Eq. (4) gives

ms2Q(s) =−kQ(s)+F(s) (5)

A change of variables using λ gives

m(
1−λ

τλ
)2Q =−kQ+F (6)

Algebraic simplification of Eq. (6) gives

m(1−2λ +λ
2)Q =−kτ

2
λ

2Q+ τ
2
λ

2F (7)

from which we could formulate the time-domain regression model y(t)= φ(t)θ where

y = λ
2{ f}, φ = ( 1

τ2 (q−2λ{q}+λ 2{q}) λ 2{q}) , θ =

(
m

k

)
(8)

where λ{ f}, λ{q} and λ 2{q} are low-pass filtered f and q.

6. Prediction error methods such as least-squares estimation for identification of ARX
models minimize the square of the prediction errors 1

N ∑
N
k=1 ε(θ)2 = 1

N ∑
N
k=1(yk −

ŷk(θ))
2 to find an estimate θ̂N of the model parameters θ . Considering linear and

Gaussian systems one could handwavingly argue that this sum is a sum of indepen-
dent variables and thus converges to an expectation as N → ∞. The residuals are not
really independent though, but it turns out that it is indeed true for linear systems with
Gaussian noise that

1
N

N

∑
k=1

ε(θ)2→ Eε(k,θ)2 =V (k,θ), N→ ∞ (9)

and also that
θ̂N → argmin

θ

V (k,θ), N→ ∞. (10)

Now assume that we have a discrete-time model, where z−1 denotes the backwards
shift operator,

yk = G(z−1,θ)uk + ek. (11)

Assume further that the true system is given by

yk = G0(z−1)uk +wk. (12)

Use Parseval’s formula to state the optimization problem 10 in the frequency domain
and argue that the input spectrum Suu(iω) can be used to choose for what frequency
bands we get the best model fit. All reasonable assumptions about the signals are OK
to use, if motivated well. (4 p)

Solution
We have

ε(k,θ) = yk− ŷk(θ) = yk−G(z−1,θ)uk =
(
G0(z−1)−G(z−1,θ)

)
uk +wk. (13)
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Assuming independence between uk and wk the spectra is given by

Sεε = |G0(iω)−G(iω,θ)|2Suu(iω)+Sww(iω) (14)

Parseval’s relation gives

V (k,θ) =
1

2π

∫
π

−π

Sεε(iω,θ)dω (15)

The optimization problem is thus given by

θ̂ = argmin
θ

V (k,θ) =
1

2π

∫
π

−π

Sεε(iω,θ)dω (16)

= argmin
θ

1
2π

∫
π

−π

|G0(iω)−G(iω,θ)|2Suu(iω)dω (17)

and we can see that Suu acts like a weight function. Where Suu(iω) is big, a deviation
between G0(iω) and G(iω,θ) is costly and we can thus choose for what frequencies
the model fit will be good.

7. The impulse response coefficients (or Markov parameters) {hk}∞
k=1 form the transfer

function

H(z) =
∞

∑
k=1

hkz−k, hk =CAk−1B

a. Show that a Hankel matrix of these coefficients can be factorised as

H
(k)

r,s =


hk+1 hk+2 · · · hk+s

hk+2 hk+3 · · · hk+s+1
...

...
. . .

...
hk+r hk+r+1 · · · hk+r+s−1



=


C

CA
...

CAr−1

Ak (B AB . . . As−1B)

(1 p)

b. How can this fact be exploited for system identification purposes? (1 p)

Solution

a. One way is to verify the factorization property by direct substitution of Markov pa-
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rameters hk =CAk−1B into the Hankel matrix.

H
(k)

r,s =


hk+1 hk+2 · · · hk+s

hk+2 hk+3 · · · hk+s+1
...

...
. . .

...
hk+r hk+r+1 · · · hk+r+s−1



=


CAkB CAk+1B · · · CAk+s−1B

CAk+1B CAk+2B · · · CAk+sB
...

...
. . .

...
CAk+r−1B CAk+rB · · · CAk+r+s+2B



=


C

CA
...

CAr−1

Ak (B AB . . . As−1B)

b. Using a numerical factorization such as the singular value decomposition it is possible
to find estimates of the extended observability and controllability matrices. In turn,
this information can be used to determine a state-space realization {A,B,C}. In the
factorization above, the matrix

Or =


C

CA
...

CAr−1


is the extended observability matrix and

Cs = (B AB . . . As−1B)

the extended controllability matrix.
For k = 0, the factorization is then:

H(0)
r,s = Or ·Cs

=UΣV T

=UΣ
1/2

Σ
1/2V T

Where the second inequality is obtained through singular value decomposition. We
then have:

Or =U ·Σ1/2

⇒ O†
r = Σ

−1/2UT

Cs = Σ
1/2 ·V T

⇒ C †
s =V T

Σ
−1/2
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The dagger sign on e.g. O†
r denotes the pseudoinverse.

The state space matrices are then, inserting the expressions for the pseudoinverse for
the extended observability and controllability in for example A=O†

r H(1)
r,s C †

s and using
the expressions above:

Ân = O†
r H(1)

r,s C †
s

= Σ
−1/2
n UT

n H(1)
r,s VnΣ

−1/2
n

B̂n = Cs ·
[
Im×m 0m×(s−1)m

]T
Ĉn =

[(
Ip×p

0T
p×(s−1)p

)]T

Or
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