
FRT 041 System Identification
Laboratory Exercise 3

Ulf Holmberg
Revised: Kjell Gustafsson
Karl Henrik Johansson

Anders Wallén
Johan Nilsson
Rolf Johansson
Johan Bengtsson

Maria Henningsson

Department of Automatic Control
Lund Institute of Technology

Lund University
October 1987

Revised: September 1989, March 1994,
March 1995, February 1996,

February 1997, February 1999,
March 2005, February 2011

Identification and Controller Design

The purpose of identification is often to get a model that can be used for
controller design. What is aimed at is a low order model that captures the
main properties of the process, and which can be used for analysis and
synthesis. It is important that the model is accurate for a frequency band
around the crossover frequency, while higher order dynamics and weak
nonlinearities often can be discarded. Also the low frequency properties are
often less important, since the closed loop behavior at these frequencies is
determined by having integration (high gain) in the controller. Still, the
sign of the static gain has to be known.
The model is valid only for a limited frequency range, and probably

uncertain also within this range. Therefore when doing the design of the
controller a synthesis method resulting in a robust controller should be
used, i.e., the performance of the controller should not be affected by small
changes in the model.
In this laboratory exercise an identification experiment will be done.

Using MATLAB a model will be estimated and used to design a controller.
The controller is then tested on the real process.
Throughout the laboratory exercise MATLAB is used. This manual con-

tains many references to MATLAB functions. Some of these are standard
MATLAB functions while others were written to facilitate the exercise.
Whenever you are in doubt about what a certain function does, use help.

Preparation

Read through “A Manual For System Identification”[Andersson et al. (1998)]
which was used in lab 2 and bring it to the laboratory exercise.

1. The process

The process to be designed is a little tricky to control. It consists of a
rectangular plate hanging in one of its edges, see Figure 1. The plate is
mounted such that it can swing back and forth. A weight is mounted on
one side of the plate to make it deflect from the vertical plane. A fan is
positioned a short distance from the plate and used to blow an air stream
on the plate, thus affecting its position. The angle between the plate and
the vertical plane is measured and act as output from the process. It is
possible to control the plate angle using the voltage to the fan motor as
control variable. The process has the following properties

• There is a time constant in the fan motor and hence the air stream
is not immediately affected when varying the motor voltage.

• The process contains a time delay since it takes some time for the air
stream to reach the plate.

• The plate acts like a pendulum resulting in a lightly damped reso-
nance.

• Turbulence causes noise which affects the process.

Try to control the process manually. Use a potentiometer to vary the voltage
to the fan motor. Try to estimate the time constant of the process and the

1

Figure 1 The process.

frequency of the resonance so that you later may judge if the identified
model is reasonable.

2. The identification experiment

You are to perform an open loop identification experiment on the process.
Start MATLAB and type initlab3 at the command prompt. This sets up
MATLAB and opens the SIMULINK model logger, which will be used to
log data, see Figure 2. The model generates a PRBS (pseudo random binary
sequence) signal which is used as input to the process. The excitation signal
and the process output are logged and saved in the workspace as u and y

for later processing in MATLAB.

Note: Skip initial data from the
sequences due to real−time
problems with initialization

(see the jitter−plot)

output u

measured y

measured u

jitter

y

To workspace

time

To Workspace2

u

To Workspaceu

measured y

measured u

jitter

Process

Out1

PRBS−generator

Clock

Figure 2 Simulink model for logging data.

The plate is to be controlled approximately around its downright po-
sition, i.e. a plate angle slightly greater than zero. This corresponds to a
certain voltage fed to the fan motor since the weight on the plate causes
it to deflect. Adjust the mean value of the excitation signal to get a small
positive plate angle. One easy way to achieve this is to use an external
adjustable voltage added to the signal to the fan motor.
When the mean value is adjusted, set the amplitude of the excitation

signal to 0.5 V. According to Åström and Wittenmark (1997) it is reasonable
to choose the sample period h such that ωh (0.2 – 0.6, where ω is the
resonance frequency of the plate estimated above. Thus we may choose
h = 50 ms. Further we decide to collect 1200 data points, and to set the
PRBS period to 10. Start the logging and consider the logged data in the
scopes.

2

Figure 3 GUI for System Identification Toolbox.

3. The identification

The System Identification Toolbox in MATLAB will be used to estimate a
model of the process. The identification may be done either by writing the
commands below or by using the graphical user interface of the System
Identification Toolbox, see Figure 3 The graphical user interface is started
by writing at the command prompt

ident

The rest of this section describes command-line identification. You can
follow the same procedure in the graphical user interface.
Begin by looking at the data by running

plot([y u])

Do the signals look all right? What transients should be neglected? Pick
out the process output and the excitation signal and remove the bias using

z = [y u];

z = detrend(z,’constant’);

which gives a matrix with two columns y and u. We check in what frequency
interval a good model might be estimated by plotting the coherence function

Γyu(ω) =
pSyu(ω)p

√

Su(ω)Sy(ω)

using the command

3

mscohere(u,y,[],[],[],1/h);

In a previous laboratory exercise we did frequency response analysis. An
alternative is to do spectral analysis in order to get an estimated frequency
response. The quality of this estimate will highly depend on the length of
the Hamming window used. This makes spectral analysis sometimes hard
to use in practice. It has been shown that for our data a window length of
about 100 is good. Try

g = spa(z,100,[],[],h);

plot(g);

It is often useful to split the data into two sequences; one for identification
and one for verification:

nz = size(y,1);

z1 = iddata(y(1:nz/2),u(1:nz/2),h);

z2 = iddata(y(nz/2+1:nz),u(nz/2+1:nz),h);

z1 = detrend(z1,0);

z2 = detrend(z2,0);

Use the function armax(z,[na,nb,nc,k]) to estimate an ARMAX model
in the backward shift operator (q−1) according to

M :
(1+ a1q−1 + ⋅ ⋅ ⋅ anaq

−na)y(t) = (b1q
−k + ⋅ ⋅ ⋅ bnbq

−k−nb+1)u(t)

+(1+ c1q−1 + ⋅ ⋅ ⋅ cncq
−nc)e(t)

Note that nb corresponds to the number of b-parameters and not the degree
of the B polynomial. The parameter k denotes the time delay in the system.
Remember to have k > 0 to get a causal model without any direct term.
Do you have any ideas about initial values for [na,nb,nc,k]?
The result of the command armax is represented on a special form, the

theta-form. The command present will list the parameter values, their
variance, the value of the loss function, and the Akaike FPE (final predic-
tion error) value. An example is

th3222 = armax(z1,[3,2,2,2]);

present(th3222)

Use the FPE and the variance of the parameter values to determine a
suitable time delay (k) and model order (na, nb and nc). Try to find a good
model with an order as low as possible (the order equals max(na,nb+k-1)).
A good way to verify the model is to compare its output signal with the
process output. This can be done as follows

ym = idsim(z2.InputData,th3222);

t = h∗[1:1:length(z2.OutputData)];

plot(t,z2.OutputData,t,ym);

Note that we use z2 and not the data that were used for model estimation
when we simulate the model.
You should also take a look at the pole-zero configuration of the model.

A too large model order may show up as poles and zeros that almost cancel.
Use

pzmap(th3222)

4

The final model, i.e. the one that is most satisfactory, should be used
to design a controller. This is also done in MATLAB. The macros that do
the design need a process model on the form B(q)/A(q), with B(q) and
A(q) being polynomials in the forward shift operator. The two polynomials
have to be extracted from the theta-form and converted to forward shift
operator form. A and B in backward shift operator are derived by

A = th3222.a; B = th3222.b;

Rewrite the transfer function into forward shift representation on a piece
of paper. MATLAB commands for what you have done are

A = [A zeros(1,k+nb-1-na)]

B(1:k) = [], B = [B zeros(1,na-k-nb+1)]

Make sure you understand that these commands convert from backward to
forward shift. Compare the zeros of A with the expected closed-loop poles
from the introduction.

4. The controller design

The design method that is going to be used is pole placement. It may be
hard to decide where to place all the poles, so for simplicity we will choose
a pole pattern and only vary its distance from the origin. This is equivalent
to restricting the time response of the closed loop system to a certain form,
and then only vary its “speed” (why?). We will vary the desired “speed” and
try to evaluate the robustness of the resulting closed loop system. Finally,
some promising designs will be stored for future tests on the real process.
Here is a step by step description of the design method.

1. First look at the frequency response of the model to try to get an idea
of how much it is possible to demand from the closed loop system.
Plot the Bode diagram using

bode(th3222)

As one expects there is a large resonance in the Bode diagram, cor-
responding to the plate acting as a pendulum. The frequency of this
resonance tells about the natural frequency of the open loop system
and gives a hint about what to expect from the closed loop system.
The controller should take care of the resonance and damp it. Trying
to get a closed loop bandwidth differing much from the resonance fre-
quency will require a large control effort and a very accurate model.
(Compare with how the closed loop poles are moved in a root locus
plot when a proportional controller is used.) What do you regard as
a reasonable range for the closed loop bandwidth?

Plot also the Nyquist curve of the model using

nyquist(th3222)

Is proportional feedback sufficient to get a stable closed loop system
with reasonable performance?

5

−1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4 The continuous time pole pattern used in the design.

2. Pole placement will be used as design method, see Åström and Wit-
tenmark (1997). The desired characteristic polynomial Am and the
observer polynomial Ao have to be chosen. To get a causal controller
it must hold that

deg Ao ≥ 2deg A− deg Am − deg B+ − 1

where B+ is the canceled (stable) part of B. For simplicity lets decide
not to cancel any zeros, i.e. B+ = 1, B− = B, and choose deg Am =
deg A " n. Then

deg Ao ≥ n− 1

Choosing deg Ao = n − 1 gives a controller with direct term. To get
an integrator in the controller, the degree of the observer has to be
increased (why?). Thus

deg Ao ≥ n

It may be hard to relate discrete time poles to the properties of the
closed loop system (at least the author believes this is hard). We will
therefore relate the choice of Am and Ao to continuous time poles. For
simplicity choose the poles equally spaced on a segment of a circle in
the left half plane of the s-plane. The radius of the circle is ωm and
half the opening angle is 45○ (a kind of Butterworth configuration,
see Figure 4). The observer poles are chosen in the same way but
at twice the distance from the origin, i.e. ω o = 2ωm. The continuous
time poles are translated to discrete time through z = esh. For a
non-integrating controller the commands are

Amc = polybutt(n,wm,45);

Aoc = polybutt(n-1,2*wm,45);

Am = real(poly(exp(roots(Amc)*h)));

Ao = real(poly(exp(roots(Aoc)*h)));

There is only one parameter, ωm, to vary in the design. It corresponds
to the closed loop bandwidth, and we will choose it in relation to our
observations in step 1.

The choice of pole pattern is naturally just a suggestion. It is probably
possible to make a better design by choosing a different pattern. If

6

you have time, try other configurations, e.g. multiple poles on the real
axis.

3. The controller is calculated by solving the DAB-equation (Diophantine-
Aryabhatta-Bezout)

AR1 + B
−S = AmAo

with B = B+B− and Bm = B ′mB
−. The controller polynomials are

given by

R = R1B
+

S = S

T = t0AoB
′
m

where t0 is used to adjust the static gain of the closed loop system to
one. In MATLAB the calculations are done using (do help rstd):

[R,S,T] = rstd(1,B,A,1,Am,Ao,Ar)

The polynomial Ar is forced into R when solving the DAB-equation.
This makes it possible to include integral action in the controller, i.e.
Ar = q− 1 or in MATLAB notation Ar = [1 -1]. If no integrator is
wanted just put Ar = 1.

4. When the controller has been calculated it needs to be evaluated. This
can be done by plotting the Nyquist curve of the loop transfer func-
tion Go(q) = B(q)S(q)/A(q)R(q). If the Nyquist curve passes close
to −1 our design is probably not very good. Naturally, the controller
stabilizes the model, but since the model does not exactly describe the
true process it may very well be that the real system will be unsta-
ble. Therefore try to find an ωm that gives a reasonable closed loop
bandwidth, but without having a Nyquist curve passing too close to
−1. If this can be satisfied it is likely that the controller will perform
well even if the true process should differ slightly from our model.
When interpreting closeness to −1, think in terms of gain and phase
margin. Try to get a loop with gain margin approximately equal to 2
and phase margin approximately equal to 60○.

Plot the Nyquist curve of Go(q)

nyquist(series(tf(S,R,h),tf(B,A,h)));

Evaluate the controller first by simulation. To save a controller for later
use, do

save regname R S T

This command saves your controller in a file regname.mat. Of course, the
controller should be causal. Check the polynomial degrees so that this re-
quirement is fulfilled.
Iterate the design steps until a couple of good controllers are found. At

least, try to find two with integration and two without integration.

7

5. Testing the controller

We are now ready to test the controllers designed above. If not already
closed, close the logger-model and then type lab3_controller to bring up
the SIMULINK model which will be used for control, see figure 5. The
model consists of a reference generator, a controller on RST-form, the I/O
connection to the process, and some scopes for displaying the signals of the
system.

offset

yref and y

u

jitter

Sum
Signal

Generator
u

measured y

measured u

jitter

Process

y_ref

y
u

Discrete RST−controller

0.2

Mux

Figure 5 Simulink model for real-time control.

Start by choosing a square wave with mean 0.1 V, amplitude 0.05 V, and
period 20 s as reference signal. Load a controller in workspace by executing

load regname

Finally, test the performance of the controller by varying the process pa-
rameters: change the distance between the fan and the plate, or change
the weight on the plate. Compare your different controllers. Do they be-
have as you expected from the design phase above? Which controller would
you prefer?

6. References

Andersson, L., U. Jönsson, and K. H. Johansson (1998): “A manual for
system identification.” In Laboratory Exercises in System Identification.
KF Sigma i Lund AB. Department of Automatic Control, Lund Institute
of Technology, Box 118, S-221 00 Lund, Sweden.

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems.
Prentice Hall.

8

