
Department of

AUTOMATIC CONTROL

FRT 041 System Identification

Final Exam March 7, 2011, 2pm  7pm

General Instructions

This is an open book exam. You may use any book you want, but no note, ex-

ercises, exams, or solution manuals are allowed. Solutions and answers to the

problems should be well motivated. The exam consists of 7 problems. The credit

for each problem is indicated in the problem. The total number of credits is 25

points. Preliminary grade limits:

Grade 3: 12 – 16 points

Grade 4: 17 – 21 points

Grade 5: 22 – 25 points

Results

The results of the exam will be posted at the latest March 21 on the note board

on the first floor of the M-building.
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Figur 1 Input-output data in Problem 1.

1. Input-output data from an unknown system is given in Figure 1. One

attempt to model the system is to use an ARX-model according to (1).

y(k) + a1y(k− 1) + a2y(k− 2) = b1u(k− 1) + b2u(k− 2) (1)

Do you expect the model to be a good description of the data? Why? In case

your answer is no to the first question, suggest a more appropriate model.

(2 p)

Solution

It is clearly seen in the figure that the system dynamics is changing, and a

time-invariant model is therefore probably not the best choice of model.

A more appropriate model would be time-varying, one could e.g. keep the

ARX model, but estimate its parameters recursively with a Kalman filter

or with exponential forgetting.

2. You are given the assignment to identify an unstable process. A stabilizing

controller exists, but it is desired to increase the closed loop performance by

using some kind of model-based based control scheme. The current control

system is given in Figure 2. The controller is given according to (2).

Gc(s) =
10s+ 20
s

(2)

You decide to use indirect identification, and the result after system iden-

tification is the transfer function from uc to y, given in (3).

uc y
Gp(s)Gc(s)

−1

+

Figur 2 The control system in Problem 2.
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Gyuc(s) =
10s2 + 70s+ 100

s3 + 12s2 + 67s+ 100 (3)

a. Calculate the process transfer function. Confirm that the process is unstab-

le. (2 p)

b. What kind of problems might occur when using indirect identification?

(1 p)

c. Suggest an alternative identification strategy and conditions for that this

strategy returns a correct estimate. (1 p)

Solution

a. The closed loop transfer function is given by (4) (calculated from the block
diagram).

Gyuc(s) =
Gp(s)Gc(s)
1+ Gp(s)Gc(s)

(4)

The process transfer function is now given as (5)

Gp(s) =
Gyuc(s)

Gc(s) (1− Gyuc(s))
(5)

By inserting the given transfer functions Gp(s) can be calculated, according
to (6).

Gp(s) =
10s2+70s+100
s3+12s2+67s+100

10s+20
s

(

1− 10s2+70s+100
s3+12s2+67s+100

) =
10s2+70s+100
s3+12s2+67s+100

(10s+20)(s3+2s2−3s)
s(s3+12s2+67s+100)

=

= 10s2 + 70s+ 100
(10s+ 20)(s2 + 7s− 3) =

(10s+ 20)(s+ 5)
(10s+ 20)(s− 1)(s+ 3) =

s+ 5
(s− 1)(s+ 3) (6)

The transfer function clearly has an unstable pole.

b. Any nonlinearity in the controller, such as saturations and anti-windup

schemes, directly degrade the result.

c. The alternative is to use direct identification. Here you must assure that

you use an input signal, uc that is exciting enough, otherwise you might

end up with an inverse model of the controller.

3. An identification experiment is performed on a process, see Figure 3. Ac-

cording to physical knowledge of the process it makes sense to assume that

a model of it will have the form (7), where {wk} is assumed to be white
noise with unknown variance.

yk + ayk−2 = buk−1 +wk (7)
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Figur 3 Input-output data in Problem 3.

a. The input signal used in this experiment was a pseudorandom binary se-

quence. Discuss why this choice of input is a good choice in general. (1 p)

b. Calculate a least-squares estimate of the parameters a and b, also calculate

an estimate of the noise variance. The following partial results might help

you in the calculations, the number of samples is N = 500. (3 p)

N−2
∑

k=1
yk = −32.48

N−2
∑

k=1
y2k = 691.88

N−1
∑

k=2
y2k+1 = 690.65

N−1
∑

k=2
yk+1yk = 325.16

N−2
∑

k=1
yk+2yk = −17.10

N−2
∑

k=1
ykuk+1 = 341.98

N−2
∑

k=1
ykuk+2 = 310.81

N−1
∑

k=2
yk+1uk = 380.46

N−1
∑

k=2
uk = −64.00

N−1
∑

k=2
u2k = 498.00
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c. After a model has been identified it has to be validated in some way, to

assure that it fulfills the modelling requirements. There are several tests

which can be used for model validation. Mention one limitation to each one

of the following test methods.

i) Residual analysis. (1 p)
ii) Coherence spectrum. (1 p)
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Figur 4 Residual analysis performed in Problem 3. The highlighted area indicates in-

dicates a 99 % confidence region.

d. Residual analysis is performed on the previously identified model, see Fi-

gure 4. What conclusions can you draw from this? What would be your next

step in the identification process? (1 p)

Solution

a. A pseudorandom binary sequence is convenient to work with as it has a

given amplitude, has low autocorrelation and the period of it can be choosen

arbitrarily long.

b. The model can be written as (8) and all observations can be collected into
(9).

yk = φTkθ +wk , φTk =
(

−yk−2 uk−1
)

, θT =
(

a b

)

(8)

YN = ΦNθ +W, YTN =
(

y3 ... yN

)

ΦTN =
(

φT3 ... φTN

)

, WT =
(

w3 ... wN

)

(9)

The least-squares estimate is now given by (10), where the components of
this expression is given in (11) and (12).

θ̂ =
(

ΦTNΦN

)−1
ΦTNYN (10)
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ΦTNΦN =
(

∑N−2
k=1 y

2
k −∑N−2

k=1 ykuk+1
−∑N−2

k=1 ykuk+1
∑N−1
k=2 u

2
k

)

(11)

ΦTNYN =
(

−∑N−2
k=1 yk+2yk

∑N−1
k=2 yk+1uk

)

(12)

Insertion of the values in the sums gives (13).

θ̂ =
(

691.88 −341.98
−341.98 498.00

)−1(
17.10

380.46

)

=
(

0.6091

1.1822

)

(13)

An unbiased estimate of the noise variance is given by (14), where p is the
number of estimated parameters and V is the loss function.

σ̂ 2w =
2

N − pV (θ̂) (14)

The loss function can be calculated according to (15)

V (θ̂) = 1
2

ε TNε N =
1

2

(

YN − ΦNθ̂
)T (
YN − ΦNθ̂

)

=

= 1
2

(

YTNYN − 2θ̂TΦTNYN + θ̂TΦTNΦNθ̂
)

(15)

The first term inside the parenthesis has not been calculated before, but it

will be given by (16). Now inserting numerical values and performing the
calculation gives V (θ̂) = 115.22. Finally using this in (14), together with
p = 2 as the number of estimated parameters is 2, gives σ̂ 2w = 0.46.

YTNYN =
N−1
∑

k=2
y2k+1 (16)

c. i) Residual analysis can not be used to investigate if the estimation is
consistent. If we have over-fitted the data the residual analysis still

would give good result and draw the conclusion that the model could

be used for predicting the behavior. But if we perform a cross validation

with data that have not been previously used we might see that the

model can not predict the behavior.

ii) It can only be used to verify if one can expect good result of an identified
model by using the data. Even if the coherence is close to one it doesn’t

guarantee that we can find a good model. We can not separate if the

low coherence value is due to high noise or nonlinearities.

d. The second plot in Figure 4 shows that all input-output behaviour has been

modelled within a 99 % confidence level. The upper plot, however, indicates

that there is some correlation left in the residuals, as lag 2 and 3 are outside

the confidence region. This is an indication of that the assumption of white

noise is not correct, and the next step in the identification process should

therefore be to add a noise model.
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4. A system is given by (17), where {vk} is an independent Gaussian noise
process with probability density function (18).

yk = ayk−1 + buk−1 + vk (17)

fv(vk) =
1√
2πσ

e
− v2

k

2σ2 (18)

Assume that input-output data from the process is available, i.e. {uk}Nk=1
and {yk}Nk=1. Derive the maximum-likelihood estimate of a, b and σ . (3 p)

Solution

The likelihood function is given by (19), where the residual ε k is defined in
(20).

L(θ ,σ ) = P(ε pθ ) = fε (ε 2, ..., ε N) =
N
∏

k=2
fv(ε k) =

N
∏

k=2

1√
2πσ

e
− ε2

k

2σ2 (19)

ε k = yk − ayk−1 − buk−1 (20)

The logarithm of the likelihood function is given by (21).

log L(θ ,σ ) = −(N − 1) log(
√
2πσ ) − 1

2σ 2

N
∑

k=2
ε 2k (21)

The partial derivative of (21) with respect to σ is (22).

� log L(θ ,σ )
�σ = −N − 1

σ
+ 1

4σ 3

N
∑

k=2
ε 2k (22)

By putting this derivative to zero and solving for σ 2 suggests that the esti-
mate σ̂ 2 should be (23).

σ̂ 2 = 1

4(N − 1)

N
∑

k=2
ε 2k (23)

Inserting this into (21) gives (24).

log L(θ , σ̂ ) = −(N − 1) log





√
2π

√

√

√

√

1

4(N − 1)

N
∑

k=2
ε 2
k



− 2(N − 1) =

= N − 1
2
log

(

π

2(N − 1)

N
∑

k=2
ε 2k

)

− 2(N − 1) =
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= N − 1
2
log

(

π

2(N − 1)

N
∑

k=2
(yk − ayk−1 − buk−1)2

)

− 2(N − 1) =

= N − 1
2

(

logπ − log 2(N − 1) + log
(

N
∑

k=2
(yk − ayk−1 − buk−1)2

))

−2(N−1)

(24)
(24) is to be maximized to find the estimates of the parameters a and b,
this is equivalent to maximizing (25).

J(a, b) = log
(

N
∑

k=2
(yk − ayk−1 − buk−1)2

)

(25)

Once this has been done, the resulting â and b̂ can be inserted into (23) to
find σ̂ .

5. A two-tank process, with two tanks in series and with the input to the upper

tank, may be described with the nonlinear state-space system (26).










ẋ1(t) = −γ 1
√

x1(t) + δu(t)
ẋ2(t) = γ 1

√

x1(t) − γ 2
√

x2(t)
y(t) = x2(t)

(26)

a. How can you use this knowledge to identify a nonlinear model? (1 p)

b. Now assume that you know nothing about the process. Usually one then

tries to identify a linear model. What do you have to think about to get a

good model when the process is nonlinear? (1 p)

c. You decide to identify a discrete-time model of the process. What can be

said about the choice of sampling frequency for the experiment? Discuss the

potential risks of choosing to high respectively to low sampling frequency

when doing system identification! (2 p)

Solution

a. This identification problem can be solved by using a grey-box model, i.e., a

model that has a known structure and parametrization but with unknown

parameters.

b. When the process is nonlinear one can not expect to get a good linear ap-

proximation for all states of the process, instead one has to consider an

approximation around some state, which hopefully is linear. This can be

achieved by using a small enough input amplitude, such that one stays in a

region of the process that can be described by a linear model. (At the same
time the amplitude should be chosen to a large value, to get a good signal

to noise ratio)
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c. As a rule of thumb, a reasonable way of choosing the sampling interval, h,

is to let

ωh = 0.2− 0.6
where ω represents important frequencies of the system, such as the cross
over frequency or the natural frequency. To choose the sampling interval

properly we must therefore have knowledge about the significant frequen-

cies of the system.

In general, if the sampling interval is chosen very short relative to the

significant frequencies of the system, this could lead to numerical precision

problems. On the other hand, by choosing a too long sampling interval,

there is a risk that important dynamics above the Nyquist frequency is not

described by the resulting model.

6. A second order transfer function (27) has been identified. You believe that
it might be approximated by a first-order model instead.

G(s) = s+ 0.25
s2 + 3s+ 2 (27)

a. Compute the first order Padé approximation (28) of G(s). Conclude why
this approximation is not good in this particular case. (1 p)

Ĝ1(s) =
b

s+ a (28)

b. A balanced realization is another method that can be used for model reduc-

tion. Describe what is meant by a balanced realization. (1 p)

c. A balanced state-space realization of a stable discrete time linear system is

(29). Decide if it is advisable to perform a model reduction for this system.
(2 p)















x(k+ 1) =
(

−0.6639 −0.5242
−0.5242 0.2639

)

x(k) +
(

0.8345

−0.5511

)

u(k)

y(k) =
(

0.8345 −0.5511
)

x(k)
(29)

Solution

a. The Padé approximation is based on the Taylor series expansion of G(s).
This is calculated in (30).

G(s) = G(0) + dG
ds
(0) + 1

2

d2G

ds2
(0) + ... = 1

8
+ 5
16
s+ 1
2

(

−17
16

)

s2 + ... (30)

For a first order approximation we only need to keep the two first terms,

giving the truncated polynomial (32).

G1(s) =
1

8
+ 5
16
s (31)
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The resulting approximation should be a rational function B1/A1, which
should match G1. B1 and A1 is found by matching polynomial coefficients

of (32).

B1(s) = G1(s)A1(s) [ b0 =
(

1
8
+ 5
16
s
)

(s+ a) = a
8
+
(

1
8
+ 5a
16

)

s+ 5
16
s2

(32)
Skip the s2-coefficient and match the other two, this results in (33), giving
the Padé approximation (34).

{

a = −2
5

b = − 1
20

(33)

Ĝ1(s) =
1/20
2/5− s (34)

This approximation is clearly unstable, which the original process was not.

Therefore this is a bad approximation.

b. A balanced realisation has ’balanced’ observability and reachability proper-

ties, that is to say the Gramians P and Q are equal.

c. To be able to determine if it advisable to perform a model reduction the ob-

servability or the reachability Gramian has to be calculated, which one does

not matter as they are equal. Let us here consider the reachability Gram-

ian, which is the solution P of (35), where Φ and Γ are system matrices
from (29), given in (36).

ΦPΦT − P + ΓΓT = 0 (35)

Φ =
(

−0.6639 −0.5242
−0.5242 0.2639

)

, Γ =
(

0.8345

−0.5511

)

(36)

P is a diagonal matrix (37), and inserting this and the matrices from (36)
gives (38).

P =
(

P1 0

0 P2

)

(37)

(

−0.5592P1 + 0.2748P2 + 0.6964 0.3480P1 − 0.1383P2 − 0.4599
0.3480P1 − 0.1383P2 − 0.4599 0.2748P1 − 0.9304P2 + 0.3037

)

= 0

(38)
Solving (38) for P1 and P2 gives (39). As the two values not are of different
magnitude, a model reduction is not advisable.

{

P1 = 1.6443
P2 = 0.8121

(39)
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7. The impulse response coefficients (or Markov parameters) {hk}∞k=1 form the
transfer function

H(z) =
∞
∑

k=1
hkz

k, hk = CAk−1B

Show that a Hankel matrix of these coefficients can be factorised as

H
(k)
r,s =













hk+1 hk+2 ⋅ ⋅ ⋅ hk+s
hk+2 hk+3 ⋅ ⋅ ⋅ hk+s+1
...

...
. . .

...

hk+r hk+r+1 ⋅ ⋅ ⋅ hk+r+s−1













=











C

CA
...

CAr−1











Ak ( B AB . . . As−1B )

(1 p)

Solution

The factorization property is verified by direct substitution of Markov pa-

rameters hk = CAk−1B.
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