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1. Introduction

In previous labs we have studied a process, which has been relatively simple. We have been

able to control it satisfactory using a simple PID-controller. In this lab we shall examine a

process which is a bit more complicated and which requires a more advanced controller. The

controller which we will use is based on state feedback and state estimation. We shall also

examine how time delays in the control loop, introduced by the communications network,

influence the control and experiment with time delay compensation.

Preparations

• Read through this manual.

• Review the lectures on state feedback, Kalman filtering and time delay compensation.

At the beginning of the lab you should be able to answer the following questions:

– What does state feedback mean? Explain in words!

– Why is an observer often used in connection with state feedback?

– How does the Smith predictor work? Explain in words!

• Solve the preparatory assignments 4.2, 5.2, 6.1 and 7.1.

• Study the MATLAB files define_process.m, design1.m, design2.m and de-

sign3.m which are found at the end of the manual (the files in this manual are com-

mented in English, whereas the real files are commented in Swedish). Try to relate

their content to the assignments in the manual.

2. The Process

A picture of the flexible servo to be controlled is shown in Figure 1. The process consists

of two masses which are interconnected by a spring. A conceptual drawing of the process

is shown in Figure 2. The mass at one end of the spring can be moved by a motor. We call

this end the motor end and the other end the load end. Note that of the two dampers d1 and

d2, only d2 is present as a discrete part of the real process. Damping at other locations in the

process can, however, be added and modeled according to Figure 2.

The purpose is to control the position p2 of the mass on the load side. On the lab process,

the position of both masses can be measured, but in the lab we will assume that only p2 is

measurable. The remaining states will be estimated by a Kalman filter.
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p1
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Figure 1 The flexible servo.

Circuit diagram

The D/A-converter should be connected to the process as shown in Figure 3.

A Linear Model of the Process

The two masses are m1 and m2. The interconnecting spring has the spring constant k. The

damping of the masses are d1 and d2, respectively.

The first mass is driven by a brush-less DC motor which is driven by a current-feedback

amplifier. Motor and amplifier dynamics are neglected. The force of the motor becomes

proportional to the input voltage u of the amplifier according to

F = kmu.

F m1 m2

p1 p2

d1 d2

k

Figure 2 Conceptual drawing of the process.
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Figure 3 Circuit diagram for the process.

A force balance gives the following dynamic model:

m1
d2 p1

dt2
=−d1

d p1

dt
− k(p1 − p2)+F

m2
d2 p2

dt2
=−d2

d p2

dt
+ k(p1 − p2)

Introduce the state vector x =


 p1 ṗ1 p2 ṗ2




T

. The process can then be expressed

in state space form as

ẋ = Ax+Bu

y =Cx
(1)

where

A =





0 1 0 0

− k
m1

− d1

m1

k
m1

0

0 0 0 1
k

m2
0 − k

m2
− d2

m2





, B =





0
km

m1

0

0





C =


0 0 ky 0





(2)

For the real lab process the following values of constants and coefficients have been mea-

sured and estimated

m1 = 2.29 kg

m2 = 2.044 kg

d1 = 3.12 N/m/s

d2 = 3.73 N/m/s

k = 400 N/m

km = 2.96 N/V

ky = 280 V/m
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Examination of the Process

Assignment 2.1 Log in and start MATLAB by opening a terminal window and typing

cd;./labstart. Define the process Gp by executing the file define_process.m:

>> define_process

Calculate the poles of the system by typing

>> pole(Gp)

Where are the poles located? Is the system stable? Asymptotically stable? Push the real pro-

cess with your hand and study its stability. Does the real behavior agree with the analysis?

Assignment 2.2 Draw the Bode plot of the process

>> bode(Gp)

If the amplitude in the Bode plot is shown in decibel, it can be changed by executing the

command

>> ctrlpref

and change "Magnitude" from dB to absolute.

Note the resonance peak in the amplitude curve. At what frequency is it located? What

relation holds between the location of the resonance peak and the locations of the poles?

Excite the process by hand and try to estimate its natural frequency. Does it coincide with

that of the model?

3. Specifications

The specifications are the requirements which the controlled system shall fulfill. In this case

we have chosen to specify the closed loop system in the time domain. We wish to have a

well damped step response with a rise time between 0.2 and 0.4 seconds, see Figure 4. In

the meanwhile, the control signal shall not be to violent, because this would wear the motor.

Additionally, to obtain a certain robustness against model uncertainties and time delays we

want a phase margin of at least 30◦.

The oscillative properties of the process make it impossible to fulfill the specifications with

a PID-controller. An attempt using a PD-controller is shown in Figure 5. The step response

is fast enough, but the controller cannot damp out the oscillations.
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Figure 4 The step response shall lie within the marked region.
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Figure 5 Step response using a PD controller with K = 0.07 and Td = 0.1.

4. State Feedback

To be able to change the process dynamics arbitrarily we make use of state feedback. First

we confirm that the system is controllable.

Assignment 4.1 Find and calculate the rank (i.e. the number of linearly independent

columns) of the system’s controllability matrix:

>> Wc = [ ... ]

>> rank(Wc)

(Note that the matrices A and B are already defined.)

Is the system controllable?
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If we start out under the assumption that the entire state vector x can be measured, the

following control law can be used

u =−Lx+ lrr (3)

Here L is a row vector, r is the reference value and lr is a scalar, see Figure 6.

Assignment 4.2 (Preparation) Show that the closed loop system can be written on the

form

ẋ = Acl x+Bcl r

y =Ccl x

when the control law (3) is used on the process. (1). What are Acl , Bcl and Ccl? How should

lr be chosen to obtain static gain 1 from r to y? Express your answers with matrix notations

used in the state model (1), i.e., do not use the explicit expressions in (2). ⋄

By means of state feedback we can place the poles of the closed loop system arbitrarily.

Practically, there are, however, limitations, e.g. limitations of the control signal. Somewhat

simplified one can state that the further a pole is moved from its original location, the more

control action will be required.

The desired pole placement can be expressed using a forth order characteristic polynomial

(see Figure 7):
(
s2 +2ζaωas+ω2

a

)(
s2 +2ζbωbs+ω2

b

)

Given a pole placement, the feedback vector L is easily computed using the command

place (see design1.m).

Assignment 4.3 Edit the file design1.m by in MATLAB executing

>> edit design1.m

Place the poles of the closed loop system by inserting suitable values of ωa, ζa, ωb and ζb.

Then calculate the controller in MATLAB by typing:

>> design1

Open the Simulink model model1.mdl by typing

>> model1

y
Processlr

r

−L

u

x

Σ

Figure 6 State feedback.
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Figure 7 Pole placement according to the characteristic polynomial
(
s2 + 2ζaωas + ω2

a

)(
s2 +

2ζbωbs+ω2
b

)
, dr ζa = cosθa och ζb = cosθb.

Simulate the closed loop system and see if it fulfills the specification on the step response.

The command specs can be used after a simulation to compare the results to specification

in Figure 3. Change the design parameters and repeat the procedure until a desired behavior

is obtained. What is a suitable pole placement for the state feedback?

Assignment 4.4 Why don’t we try this controller on the real process?

5. Observers

Practically, we cannot measure all states of the process, but only its output y. Instead we

acquire a model of the process and feed the model with the same input as the real process.

The difference between the outputs of the model and real process is used to correct the

state of the model so that it converges to the state of the process. Such a device is called an

observer or Kalman filter.

The observer is described by

dx̂

dt
= Ax̂+Bu+K

(
y−Cx̂

)
(4)

where x̂ denotes the estimated states. The column vector K can be chosen such that the states

of the observer converge to the states of the process arbitrarily fast, given that the system is

observable.

Assignment 5.1 Find and calculate the rank of the observability matrix for the system:

>> Wo = [ ... ]

>> rank(Wo)
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Is the system observable?

Using the Kalman filter we can establish feedback from the estimated states instead of the

real states, see Figure 8. The new control law becomes

u =−Lx̂+ lrr (5)

Assignment 5.2 (Preparation) Starting out with (4) and (5), show that the controller

based on state feedback from the estimated states can be written on the form

dx̂

dt
= AR x̂+BRy

y+BRr
r

u =CR x̂+DRy
y+DRr

r

What are AR, BRy
, BRr

, CR, DRy
and DRr

? Express your answers with the matrix notations

used in (1), (4) and (5). ⋄

Because the process has four states, the observer will also have four states. We specify the

poles of the observer according to the following characteristic polynomial

(
s2 +2ζcωcs+ω2

c

)(
s2 +2ζdωds+ω2

d

)

A suitable choice of poles depend, among other things, on the amount of measurement

noise, the size of modeling inaccuracies and wether the initial condition is known. Fast poles

mean high amplification of measurement noise, whereas slow poles give slow convergence

of the estimate. As starting point, a rule of thumb stating that the observer poles should be

1.5-2 times faster than the state feedback, could be used.

Assignment 5.3 Edit the file design2.m and enter the values of ωa, ζa, ωb and ζb from

section 4. Then enter some suitable values for ωc, ζc, ωd and ζd . Calculate the entire con-

troller (state feedback + observer) by executing the file:

>> design2

y
Processlr

Kalman

r

−L

u

x̂

Σ

Figure 8 Feedback from estimated states. The controller consists of the blocks within the dashed

line.
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Then open the Simulink model model2.mdl by typing

>> model2

Simulate the closed loop system and see if it fulfills the specifications. Change the design

parameters and iterate the procedure until desired behavior is obtained. (If necessary, also

change the pole placement for the state feedback.) Also draw the Bode plot of the open loop

system using

>> margin(Gp*Gr)

and verify that the specification on the phase margin is fulfilled. Also in this assignment you

should try to keep the phase margin around 40◦. What is a suitable pole placement for the

observer?

Assignment 5.4 Draw the Bode plot by typing

>> bode(Gr)

What gain does the controller have for low frequencies? What does this mean to the con-

troller’s ability to suppress constant load disturbances?

Assignment 5.5 Try the controller on the real process, see section A. How does the real

step response differ from the simulated one? What is limiting the performance?

Assignment 5.6 On the real process it is actually possible to measure both x1 (the position

of the first mass) and x3 (the position of the second mass), even though we assume in the

lab that only x3 is available for feedback. We can, however, use both measurement signals

to examine how well the Kalman filter works. Study how well the estimated states x̂1 and x̂3

agree with the real process states x1 and x3. For which state do we have the best estimate?
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6. Integral Action

To eliminate stationary errors integral action is introduced in the controller, see Figure 9.

The integrator is introduced as an extra state xi according to

xi =
∫

(r− y)dt

ẋi = r− y = r−Cx (6)

If the extended state vector

xe =




x

xi





is introduced, the extended system (i.e. the process and the integrator) can be written

ẋe =




A 0

−C 0





︸ ︷︷ ︸

Ae

xe +




B

0





︸ ︷︷ ︸

Be

u+




0

1





︸ ︷︷ ︸

Br

r

y =


C 0





︸ ︷︷ ︸

Ce

xe

If we, for the moment, reassume that the entire state vector is measurable, we can establish

feedback from both the states of the process and the integral state according to

u =−Lx− lixi + lrr =−Lexe + lrr

where

Le =


L li





The closed loop system becomes

ẋe = (Ae −BeLe)xe +(Belr +Br)r

y =Cexe

y
Processlr

Kalman

r

−L

u

x̂

Σ

Σ

e xi −li
1

s

−1

Figure 9 Feedback from estimated states with integral action.
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Because the extended system has five states, the poles of the state feedback are now specified

using a fifth order characteristic polynomial:

(
s2 +2ζaωas+ω2

a

)(
s2 +2ζbωbs+ω2

b

)(
s+ωe

)

As before, we cannot measure the states of the process. Consequently, feedback is estab-

lished from the estimated states and the integrator according to the control law

u =−Lx̂− lixi + lrr (7)

Assignment 6.1 (Preparation) Starting out with (4), (6) and (7), show that a controller

with integral action based on state feedback from estimated states can be written on the

form




dx̂
dt

dxi

dt



=




∗ ∗

∗ ∗





︸ ︷︷ ︸

AR




x̂

xi



+




∗

∗





︸ ︷︷ ︸

BRy

y +




∗

∗





︸ ︷︷ ︸

BRr

r

u =


∗ ∗




︸ ︷︷ ︸

CR




x̂

xi



+


∗




︸ ︷︷ ︸

DRy

y +


∗




︸ ︷︷ ︸

DRr

r

What are AR, BRy
, BRr

, CR, DRy
and DRr

? ⋄

Assignment 6.2 Edit the file design3.m and insert your values on ωa, ζa, ωb, ζb, ωc, ζc,

ωd and ζd . Also insert suitable values of ωe. Calculate the entire controller (state feedback

+ integrator + observer) by executing the file:

>> design3

Open the Simulink model model3.mdl by typing

>> model3

Simulate the closed loop system and see wether it fulfills the specifications. Change the

design parameters and iterate the procedure until the step response specification is fulfilled.

Also draw the Bode plots of the open loop system by typing

>> margin(Gp*Gr)

and verify that the specification on the phase margin is fulfilled. What is a suitable pole

placement?
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Assignment 6.3 Insert all poles of the closed loop system in the pole zero plot below:

Assignment 6.4 Draw the Bode plot of the controller using

>> bode(Gr)

How is it seen that the controller has integral action?

Assignment 6.5 Try the controller on the real process. How do the results differ from

assignment 5.5.?

When integral action is introduced, the term lrr is no longer needed in the control law to

obtain the correct static gain – this is handled by the integrator. Instead lr can be chosen

to trim the step response at reference value changes. As seen in (7), lr 6= 0 means a direct

connection between reference value and control signal. A value lr > 0 can also be used to

give the process an extra ”push” at a reference value step. (This could be especially useful

when controlling the real process, which has unmodelled friction.)

Assignment 6.6 What value does lr have now? Change the value of lr in design3.m and

conduct new experiments on the real process. What is a suitable value for lr?
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7. Control with Time Delay

Modern control systems are often distributed, so that sensors, actuators and controllers are

situated at different nodes in a network. The advantage with distributed systems is mainly

their flexibility. A disadvantage, from the control point of view, are the time delays which

arise when a control loop is closed over a network. If the delays are long compared to the

speed of the closed loop system, performance can be significantly decreased.

In this section we continue working on the controller we designed in the previous section,

but add a time delay in the control loop by delaying the control signal.

Assignment 7.1 (Preparation) What is the delay margin for a system with phase margin

ϕm and cutoff frequency ωc?

Assignment 7.2 Compute the delay margin of the controller which you designed in as-

signment 6.2 using the command

>> allmargin(Gp*Gr)

(If the amplitude curve of the open loop system has multiple crossings, there can exist

several cutoff frequencies and phase margins. In this case the correct value is the smallest

value of the delay margin reported by allmargin.)

Control through Ping Packets

The controlled process is slow in comparison to the speed in typical local area networks

intended for control. To obtain delays of significant influence on performance, we shall

instead try to control the process through a detour on the Internet.

We now assume that the process output is samples with a period of h= 10 ms. The controller

computes a new control signal during every period and puts the result as data in a so called

ping packet (ICMP Echo Request). The packet is then sent to an arbitrary IP address. If

the host computer responds to the ping request, it will return a packet (ICMP Echo Reply)

containing the same data. The answer is read by the Simulink model which updates the

control signal to the process accordingly.

If the time delay is known and somewhat constant it can be compensated for by using a

Smith predictor, see Figure 10.

The concept of the Smith predictor is to control the process using a simulated model without

delay. The real output is canceled by a simulated model with delay. This obviously requires

a good model of the real process. Additionally, it requires the process model to be stable.

Assignment 7.3 Open the Simulink model model4.mdl by typing

>> model4

We begin by investigating the performance without delay compensation. Enter an arbitrary

IP address (name or number) in the ping block and simulate the system. Experiment with

different addresses and write down the resulting delays. How long delays can the system
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Figure 10 The Smith predictor.

handle without becoming unstable? Does the result agree with the analysis in assignment

7.2?

(The sampling of the measurement signal and updating of the control signal is done in the

beginning of every sampling period. This results in an upward rounding of the real delay

to the closest multiple of 10 ms. Additionally, the sampling by itself can be considered to

introduce an extra delay of a half sampling period, i.e. an additional 5 ms delay.)

Assignment 7.4 Find a host computer which gives a delay of approximately 30–50 ms.

Activate the Smith predictor by entering the estimated delay in the delay block. How well

does the delay compensation work?

Assignment 7.5 Also try the Smith predictor on the real process. How does the real step

response differ from the simulated one?

Assignment 7.6 Try to find a host computer with really long delays. How long delays can

be compensated for using the real process?
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Assignment 7.6 (Extra) As we saw in the previous assignment, the Smith predictor does

not work too well if both the process and controller contain an integrator. This can be seen

if we draw the Bode plot of the Smith controller’s transfer function:

Gotto =
GR0

1−GR0
ĜP0

(1− e−sL̂)

Draw the Bode plot by typing

>> plototto

Does the controller have any integral action? What does this mean for the stationary error?

(There are many different modifications to the Smith predictor which remove this limita-

tion.)
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8. Summary

This summary is intended to review relevant questions which you should be able to answer

after finishing the experimental part. The lab assistant will go through your summary before

you can pass the lab.

Assignment 8.1 Mention at least three limitations of the real process which are not cap-

tured by the mathematical model.

Assignment 8.2 The flexible servo is a strongly resonant process. How can this be seen

in its Bode plot and pole-zero diagram, respectively?

Assignment 8.3 Why didn’t we try the controller based on pure state feedback (section 4)

on the real process?

Assignment 8.4 How can state feedback be used if all states are not measurable?

Assignment 8.5 When using state feedback from estimated states (section 5), how many

poles does the closed loop system have?

Assignment 8.6 How many states did the controller with integral action (section 6) con-

tain? Which?

Assignment 8.7 How is it seen in the Bode plot of the controller wether it has integral

action or not?

Assignment 8.8 Why is it practically impossible to compensate for arbitrary long delays?
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A. Handling of the Process

On the process there are buttons to reset the position sensors. Place the masses in position 0

and press RESET and the two POS buttons. If the masses hit either of the stop blocks a safety

system is activated and the current is cut from the motor. The safety system is reset by

pressing the RESET button. This can only be done when the input to the process is zero.

Always put the masses in the zero position and reset the position sensors before every ex-

periment to decrease transient behavior at the beginning of the experiment.

Observe! The motor driving the masses is very strong and it is therefore important

to handle the process with respect. Think about where you place your hands during

experiments.

B. MATLAB-filer

define_process.m

% Create a linear model of the process

m1 = 2.29; m2 = 2.044; % masses

d1 = 3.12; d2 = 3.73; % damping constants

k = 400; % spring constant

km = 2.96; % motor constant

ky = 280; % measurement constant

A = [0 1 0 0; -k/m1 -d1/m1 k/m1 0; 0 0 0 1; k/m2 0 -k/m2 -d2/m2];

B = [0; km/m1; 0; 0];

C = [0 0 ky 0];

D = 0;

Gp = ss(A,B,C,D); % create state space model of the process

design1.m — Calculation of controller based on pure state feedback

% Design of state feedback

omegaa = ...; % speed of one pole pair

zetaa = ...; % damping of one pole pair

omegab = ...; % speed of the other pole pair

zetab = ...; % damping of the other pole pair

pc = conv([1 2*omegaa*zetaa omegaa^2],[1 2*omegab*zetab omegab^2]);

poles1 = roots(pc);

L = place(A,B,poles1); % compute the state feedback vector L

lr = 1/(C*inv(-A+B*L)*B); % compute lr such that the static gain

% from r->y becomes 1

17



design2.m — Calculation of controller based on state feedback from observer

% Design of state feedback

omegaa = ...; % speed of one pole pair

zetaa = ...; % damping of one pole pair

omegab = ...; % speed of the other pole pair

zetab = ...; % damping of the other pole pair

pc = conv([1 2*omegaa*zetaa omegaa^2],[1 2*omegab*zetab omegab^2]);

poles1 = roots(pc);

L = place(A,B,poles1); % compute the state feedback vector L

lr = 1/(C*inv(-A+B*L)*B); % compute lr such that the static gain

% from r->y becomes 1

% Design of Observer

omegac = ...; % speed of one pole pair

zetac = ...; % damping of one pole pair

omegad = ...; % speed of the other pole pair

zetad = ...; % damping of the other pole pair

po = conv([1 2*omegac*zetac omegac^2],[1 2*omegad*zetad omegad^2]);

poles2 = roots(po);

K = place(A’,C’,poles2)’; % compute the Kalman gain K

% Computation of controller (observer + state feedback)

AR = A-B*L-K*C;

BRy = K;

BRr = B*lr;

CR = -L;

DRy = 0;

DRr = lr;

Gr = -ss(AR, BRy, CR, DRy); % transfer function from -y to u
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design3.m — Calculation of controller based on state feedback from observer with

integral action

% Design of state feedback with integral action

Ae = [A zeros(4,1); -C 0]; % A-matrix for the extended system

Be = [B; 0]; % B-matrix for the extended system

omegaa = ...; % speed of one pole pair

zetaa = ...; % damping of one pole pair

omegab = ...; % speed of the other pole pair

zetab = ...; % damping of the other pole pair

omegae = ...; % speed of the fifth pole

pc = conv([1 2*omegaa*zetaa omegaa^2],[1 2*omegab*zetab omegab^2]);

pc = conv(pc, [1 omegae]);

poles1 = roots(pc);

Le = place(Ae,Be,poles1); % compute the state feedback vector Le

L = Le(1:4);

li = Le(5);

lr = 0; % direct connection from reference value

% Design of observer

omegac = ...; % speed of one pole pair

zetac = ...; % damping of one pole pair

omegad = ...; % speed of the other pole pair

zetad = ...; % damping of the other pole pair

po = conv([1 2*omegac*zetac omegac^2],[1 2*omegad*zetad omegad^2]);

poles2 = roots(po);

K = place(A’,C’,poles2)’; % compute the Kalman gain K

% Computation of controller (observer + state feedback with integral action)

AR = [A-B*L-K*C -B*li; zeros(1,4) 0];

BRy = [K; -1];

BRr = [B*lr; 1];

CR = [-L -li];

DRy = 0;

DRr = lr;

Gr = -ss(AR,BRy,CR,DRy); % transfer function from -y to u
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